結果

問題 No.931 Multiplicative Convolution
ユーザー fumofumofuni
提出日時 2022-10-16 19:02:58
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 255 ms / 2,000 ms
コード長 5,405 bytes
コンパイル時間 2,373 ms
コンパイル使用メモリ 209,532 KB
最終ジャッジ日時 2025-02-08 07:14:02
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
#define rep(i,n) for(ll i=0;i<n;i++)
#define repl(i,l,r) for(ll i=(l);i<(r);i++)
#define per(i,n) for(ll i=(n)-1;i>=0;i--)
#define perl(i,r,l) for(ll i=r-1;i>=l;i--)
#define fi first
#define se second
#define pb push_back
#define ins insert
#define pqueue(x) priority_queue<x,vector<x>,greater<x>>
#define all(x) (x).begin(),(x).end()
#define CST(x) cout<<fixed<<setprecision(x)
#define vtpl(x,y,z) vector<tuple<x,y,z>>
#define rev(x) reverse(x);
using ll=long long;
using vl=vector<ll>;
using vvl=vector<vector<ll>>;
using pl=pair<ll,ll>;
using vpl=vector<pl>;
using vvpl=vector<vpl>;
const ll MOD=1000000007;
const ll MOD9=998244353;
const int inf=1e9+10;
const ll INF=4e18;
const ll dy[9]={0,1,-1,0,1,1,-1,-1,0};
const ll dx[9]={1,0,0,-1,1,-1,1,-1,0};
template<class T> inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T> inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
namespace NTT {
//MOD9NTT auto c=NTT::mul(a,b)
std::vector<ll> tmp;
size_t sz = 1;
inline ll powMod(ll n, ll p, ll m) {
ll res = 1;
while (p) {
if (p & 1) res = res * n % m;
n = n * n % m;
p >>= 1;
}
return res;
}
inline ll invMod(ll n, ll m) {
return powMod(n, m - 2, m);
}
ll extGcd(ll a, ll b, ll &p, ll &q) {
if (b == 0) { p = 1; q = 0; return a; }
ll d = extGcd(b, a%b, q, p);
q -= a/b * p;
return d;
}
pair<ll, ll> ChineseRem(const vector<ll> &b, const vector<ll> &m) {
ll r = 0, M = 1;
for (int i = 0; i < (int)b.size(); ++i) {
ll p, q;
ll d = extGcd(M, m[i], p, q); // p is inv of M/d (mod. m[i]/d)
if ((b[i] - r) % d != 0) return make_pair(0, -1);
ll tmp = (b[i] - r) / d * p % (m[i]/d);
r += M * tmp;
M *= m[i]/d;
}
return make_pair((r+M+M)%M, M);
}
template <ll Mod, ll PrimitiveRoot>
struct NTTPart {
static std::vector<ll> ntt(std::vector<ll> a, bool inv = false) {
size_t mask = sz - 1;
size_t p = 0;
for (size_t i = sz >> 1; i >= 1; i >>= 1) {
auto& cur = (p & 1) ? tmp : a;
auto& nex = (p & 1) ? a : tmp;
ll e = powMod(PrimitiveRoot, (Mod - 1) / sz * i, Mod);
if (inv) e = invMod(e, Mod);
ll w = 1;
for (size_t j = 0; j < sz; j += i) {
for (size_t k = 0; k < i; ++k) {
nex[j + k] = (cur[((j << 1) & mask) + k] + w * cur[(((j << 1) + i) & mask) + k]) % Mod;
}
w = w * e % Mod;
}
++p;
}
if (p & 1) std::swap(a, tmp);
if (inv) {
ll invSz = invMod(sz, Mod);
for (size_t i = 0; i < sz; ++i) a[i] = a[i] * invSz % Mod;
}
return a;
}
static std::vector<ll> mul(std::vector<ll> a, std::vector<ll> b) {
a = ntt(a);
b = ntt(b);
for (size_t i = 0; i < sz; ++i) a[i] = a[i] * b[i] % Mod;
a = ntt(a, true);
return a;
}
};
std::vector<ll> mul(std::vector<ll> a, std::vector<ll> b) {
size_t m = a.size() + b.size() - 1;
sz = 1;
while (m > sz) sz <<= 1;
tmp.resize(sz);
a.resize(sz, 0);
b.resize(sz, 0);
vector<ll> c=NTTPart<998244353,3>::mul(a, b);
c.resize(m);
return c;
}
std::vector<ll> mul_ll(std::vector<ll> a, std::vector<ll> b) {
size_t m = a.size() + b.size() - 1;
sz = 1;
while (m > sz) sz <<= 1;
tmp.resize(sz);
a.resize(sz, 0);
b.resize(sz, 0);
vector<ll> c=NTTPart<998244353,3>::mul(a, b);
vector<ll> d=NTTPart<1224736769,3>::mul(a, b);
c.resize(m);d.resize(m);
vector<ll> e(m);
rep(i,m)e[i]=ChineseRem({c[i],d[i]},{998244353,1224736769}).first;
return e;
}
};
ll pow_mod(ll a,ll n, ll mod) {
a%=mod;if(a==0)return 0;
ll res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
int main(){
//ll p=200003;
ll p;cin >> p;
ll r=primitive_root_constexpr(p);
vl a(p);rep(i,p-1)cin >> a[i+1];
vl b(p);rep(i,p-1)cin >> b[i+1];
vl trans(p);
vl inverse(p);
ll cnt=1;
rep(i,p-1){
trans[cnt]=i;
inverse[i]=cnt;
cnt=cnt*r%p;
}
vector<ll> dp(p),ep(p);
rep(i,p)dp[trans[i]]+=a[i];
rep(i,p)ep[trans[i]]+=b[i];
dp=NTT::mul_ll(dp,ep);
vl ans(p);
rep(i,p*2-1){
//if(dp[i])cout << inverse[i%(p-1)] <<" " << dp[i] << endl;
ans[inverse[i%(p-1)]]+=dp[i];
}
rep(i,p-1)cout << ans[i+1]%MOD9 <<" ";cout << endl;
//cout << ans%MOD9 << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0