結果
問題 | No.931 Multiplicative Convolution |
ユーザー |
|
提出日時 | 2022-10-16 19:02:58 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 255 ms / 2,000 ms |
コード長 | 5,405 bytes |
コンパイル時間 | 2,373 ms |
コンパイル使用メモリ | 209,532 KB |
最終ジャッジ日時 | 2025-02-08 07:14:02 |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 14 |
ソースコード
#include<bits/stdc++.h>using namespace std;#define rep(i,n) for(ll i=0;i<n;i++)#define repl(i,l,r) for(ll i=(l);i<(r);i++)#define per(i,n) for(ll i=(n)-1;i>=0;i--)#define perl(i,r,l) for(ll i=r-1;i>=l;i--)#define fi first#define se second#define pb push_back#define ins insert#define pqueue(x) priority_queue<x,vector<x>,greater<x>>#define all(x) (x).begin(),(x).end()#define CST(x) cout<<fixed<<setprecision(x)#define vtpl(x,y,z) vector<tuple<x,y,z>>#define rev(x) reverse(x);using ll=long long;using vl=vector<ll>;using vvl=vector<vector<ll>>;using pl=pair<ll,ll>;using vpl=vector<pl>;using vvpl=vector<vpl>;const ll MOD=1000000007;const ll MOD9=998244353;const int inf=1e9+10;const ll INF=4e18;const ll dy[9]={0,1,-1,0,1,1,-1,-1,0};const ll dx[9]={1,0,0,-1,1,-1,1,-1,0};template<class T> inline bool chmin(T& a, T b) {if (a > b) {a = b;return true;}return false;}template<class T> inline bool chmax(T& a, T b) {if (a < b) {a = b;return true;}return false;}namespace NTT {//MOD9のNTT auto c=NTT::mul(a,b)で受け取り。std::vector<ll> tmp;size_t sz = 1;inline ll powMod(ll n, ll p, ll m) {ll res = 1;while (p) {if (p & 1) res = res * n % m;n = n * n % m;p >>= 1;}return res;}inline ll invMod(ll n, ll m) {return powMod(n, m - 2, m);}ll extGcd(ll a, ll b, ll &p, ll &q) {if (b == 0) { p = 1; q = 0; return a; }ll d = extGcd(b, a%b, q, p);q -= a/b * p;return d;}pair<ll, ll> ChineseRem(const vector<ll> &b, const vector<ll> &m) {ll r = 0, M = 1;for (int i = 0; i < (int)b.size(); ++i) {ll p, q;ll d = extGcd(M, m[i], p, q); // p is inv of M/d (mod. m[i]/d)if ((b[i] - r) % d != 0) return make_pair(0, -1);ll tmp = (b[i] - r) / d * p % (m[i]/d);r += M * tmp;M *= m[i]/d;}return make_pair((r+M+M)%M, M);}template <ll Mod, ll PrimitiveRoot>struct NTTPart {static std::vector<ll> ntt(std::vector<ll> a, bool inv = false) {size_t mask = sz - 1;size_t p = 0;for (size_t i = sz >> 1; i >= 1; i >>= 1) {auto& cur = (p & 1) ? tmp : a;auto& nex = (p & 1) ? a : tmp;ll e = powMod(PrimitiveRoot, (Mod - 1) / sz * i, Mod);if (inv) e = invMod(e, Mod);ll w = 1;for (size_t j = 0; j < sz; j += i) {for (size_t k = 0; k < i; ++k) {nex[j + k] = (cur[((j << 1) & mask) + k] + w * cur[(((j << 1) + i) & mask) + k]) % Mod;}w = w * e % Mod;}++p;}if (p & 1) std::swap(a, tmp);if (inv) {ll invSz = invMod(sz, Mod);for (size_t i = 0; i < sz; ++i) a[i] = a[i] * invSz % Mod;}return a;}static std::vector<ll> mul(std::vector<ll> a, std::vector<ll> b) {a = ntt(a);b = ntt(b);for (size_t i = 0; i < sz; ++i) a[i] = a[i] * b[i] % Mod;a = ntt(a, true);return a;}};std::vector<ll> mul(std::vector<ll> a, std::vector<ll> b) {size_t m = a.size() + b.size() - 1;sz = 1;while (m > sz) sz <<= 1;tmp.resize(sz);a.resize(sz, 0);b.resize(sz, 0);vector<ll> c=NTTPart<998244353,3>::mul(a, b);c.resize(m);return c;}std::vector<ll> mul_ll(std::vector<ll> a, std::vector<ll> b) {size_t m = a.size() + b.size() - 1;sz = 1;while (m > sz) sz <<= 1;tmp.resize(sz);a.resize(sz, 0);b.resize(sz, 0);vector<ll> c=NTTPart<998244353,3>::mul(a, b);vector<ll> d=NTTPart<1224736769,3>::mul(a, b);c.resize(m);d.resize(m);vector<ll> e(m);rep(i,m)e[i]=ChineseRem({c[i],d[i]},{998244353,1224736769}).first;return e;}};ll pow_mod(ll a,ll n, ll mod) {a%=mod;if(a==0)return 0;ll res = 1;while (n > 0) {if (n & 1) res = res * a % mod;a = a * a % mod;n >>= 1;}return res;}constexpr int primitive_root_constexpr(int m) {if (m == 2) return 1;if (m == 167772161) return 3;if (m == 469762049) return 3;if (m == 754974721) return 11;if (m == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;int x = (m - 1) / 2;while (x % 2 == 0) x /= 2;for (int i = 3; (long long)(i)*i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) {x /= i;}}}if (x > 1) {divs[cnt++] = x;}for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (pow_mod(g, (m - 1) / divs[i], m) == 1) {ok = false;break;}}if (ok) return g;}}int main(){//ll p=200003;ll p;cin >> p;ll r=primitive_root_constexpr(p);vl a(p);rep(i,p-1)cin >> a[i+1];vl b(p);rep(i,p-1)cin >> b[i+1];vl trans(p);vl inverse(p);ll cnt=1;rep(i,p-1){trans[cnt]=i;inverse[i]=cnt;cnt=cnt*r%p;}vector<ll> dp(p),ep(p);rep(i,p)dp[trans[i]]+=a[i];rep(i,p)ep[trans[i]]+=b[i];dp=NTT::mul_ll(dp,ep);vl ans(p);rep(i,p*2-1){//if(dp[i])cout << inverse[i%(p-1)] <<" " << dp[i] << endl;ans[inverse[i%(p-1)]]+=dp[i];}rep(i,p-1)cout << ans[i+1]%MOD9 <<" ";cout << endl;//cout << ans%MOD9 << endl;}