結果

問題 No.2008 Super Worker
ユーザー rogi52
提出日時 2022-10-16 22:16:06
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 75 ms / 2,000 ms
コード長 15,730 bytes
コンパイル時間 2,681 ms
コンパイル使用メモリ 215,744 KB
最終ジャッジ日時 2025-02-08 07:20:42
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define rep(i,n) for(int i = 0; i < (n); i++)
using namespace std;
typedef long long ll;
template<int MOD> struct Fp {
long long val;
constexpr Fp(long long v = 0) noexcept : val(v % MOD) { if (val < 0) val += MOD; }
constexpr int getmod() const { return MOD; }
constexpr Fp operator - () const noexcept { return val ? MOD - val : 0; }
constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
constexpr Fp& operator += (const Fp& r) noexcept {
val += r.val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -= (const Fp& r) noexcept {
val -= r.val;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp& operator *= (const Fp& r) noexcept {
val = val * r.val % MOD;
return *this;
}
constexpr Fp& operator /= (const Fp& r) noexcept {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
constexpr bool operator == (const Fp& r) const noexcept {
return this->val == r.val;
}
constexpr bool operator != (const Fp& r) const noexcept {
return this->val != r.val;
}
constexpr bool operator < (const Fp& r) const noexcept {
return this->val < r.val;
}
friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept {
is >> x.val;
x.val %= MOD;
if (x.val < 0) x.val += MOD;
return is;
}
friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept {
return os << x.val;
}
friend constexpr Fp<MOD> modpow(const Fp<MOD>& a, long long n) noexcept {
if (n == 0) return 1;
auto t = modpow(a, n / 2);
t = t * t;
if (n & 1) t = t * a;
return t;
}
};
namespace NTT {
long long modpow(long long a, long long n, int mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
long long modinv(long long a, int mod) {
long long b = mod, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
u %= mod;
if (u < 0) u += mod;
return u;
}
int calc_primitive_root(int mod) {
if (mod == 2) return 1;
if (mod == 167772161) return 3;
if (mod == 469762049) return 3;
if (mod == 754974721) return 11;
if (mod == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
long long x = (mod - 1) / 2;
while (x % 2 == 0) x /= 2;
for (long long i = 3; i * i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) x /= i;
}
}
if (x > 1) divs[cnt++] = x;
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (modpow(g, (mod - 1) / divs[i], mod) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
int get_fft_size(int N, int M) {
int size_a = 1, size_b = 1;
while (size_a < N) size_a <<= 1;
while (size_b < M) size_b <<= 1;
return max(size_a, size_b) << 1;
}
// number-theoretic transform
template<class mint> void trans(vector<mint> &v, bool inv = false) {
if (v.empty()) return;
int N = (int)v.size();
int MOD = v[0].getmod();
int PR = calc_primitive_root(MOD);
static bool first = true;
static vector<long long> vbw(30), vibw(30);
if (first) {
first = false;
for (int k = 0; k < 30; ++k) {
vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);
vibw[k] = modinv(vbw[k], MOD);
}
}
for (int i = 0, j = 1; j < N - 1; j++) {
for (int k = N >> 1; k > (i ^= k); k >>= 1);
if (i > j) swap(v[i], v[j]);
}
for (int k = 0, t = 2; t <= N; ++k, t <<= 1) {
long long bw = vbw[k];
if (inv) bw = vibw[k];
for (int i = 0; i < N; i += t) {
mint w = 1;
for (int j = 0; j < t/2; ++j) {
int j1 = i + j, j2 = i + j + t/2;
mint c1 = v[j1], c2 = v[j2] * w;
v[j1] = c1 + c2;
v[j2] = c1 - c2;
w *= bw;
}
}
}
if (inv) {
long long invN = modinv(N, MOD);
for (int i = 0; i < N; ++i) v[i] = v[i] * invN;
}
}
// for garner
static constexpr int MOD0 = 754974721;
static constexpr int MOD1 = 167772161;
static constexpr int MOD2 = 469762049;
using mint0 = Fp<MOD0>;
using mint1 = Fp<MOD1>;
using mint2 = Fp<MOD2>;
static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1);
static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2);
static const mint2 imod01 = 187290749; // imod1 / MOD0;
// small case (T = mint, long long)
template<class T> vector<T> naive_mul
(const vector<T> &A, const vector<T> &B) {
if (A.empty() || B.empty()) return {};
int N = (int)A.size(), M = (int)B.size();
vector<T> res(N + M - 1);
for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)
res[i + j] += A[i] * B[j];
return res;
}
// mint
template<class mint> vector<mint> mul
(const vector<mint> &A, const vector<mint> &B) {
if (A.empty() || B.empty()) return {};
int N = (int)A.size(), M = (int)B.size();
if (min(N, M) < 30) return naive_mul(A, B);
int MOD = A[0].getmod();
int size_fft = get_fft_size(N, M);
if (MOD == 998244353) {
vector<mint> a(size_fft), b(size_fft), c(size_fft);
for (int i = 0; i < N; ++i) a[i] = A[i];
for (int i = 0; i < M; ++i) b[i] = B[i];
trans(a), trans(b);
vector<mint> res(size_fft);
for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];
trans(res, true);
res.resize(N + M - 1);
return res;
}
vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
for (int i = 0; i < N; ++i)
a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val;
for (int i = 0; i < M; ++i)
b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val;
trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);
for (int i = 0; i < size_fft; ++i) {
c0[i] = a0[i] * b0[i];
c1[i] = a1[i] * b1[i];
c2[i] = a2[i] * b2[i];
}
trans(c0, true), trans(c1, true), trans(c2, true);
static const mint mod0 = MOD0, mod01 = mod0 * MOD1;
vector<mint> res(N + M - 1);
for (int i = 0; i < N + M - 1; ++i) {
int y0 = c0[i].val;
int y1 = (imod0 * (c1[i] - y0)).val;
int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;
res[i] = mod01 * y2 + mod0 * y1 + y0;
}
return res;
}
// long long
vector<long long> mul_ll
(const vector<long long> &A, const vector<long long> &B) {
if (A.empty() || B.empty()) return {};
int N = (int)A.size(), M = (int)B.size();
if (min(N, M) < 30) return naive_mul(A, B);
int size_fft = get_fft_size(N, M);
vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
for (int i = 0; i < N; ++i)
a0[i] = A[i], a1[i] = A[i], a2[i] = A[i];
for (int i = 0; i < M; ++i)
b0[i] = B[i], b1[i] = B[i], b2[i] = B[i];
trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);
for (int i = 0; i < size_fft; ++i) {
c0[i] = a0[i] * b0[i];
c1[i] = a1[i] * b1[i];
c2[i] = a2[i] * b2[i];
}
trans(c0, true), trans(c1, true), trans(c2, true);
static const long long mod0 = MOD0, mod01 = mod0 * MOD1;
vector<long long> res(N + M - 1);
for (int i = 0; i < N + M - 1; ++i) {
int y0 = c0[i].val;
int y1 = (imod0 * (c1[i] - y0)).val;
int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;
res[i] = mod01 * y2 + mod0 * y1 + y0;
}
return res;
}
};
// Binomial coefficient
template<class T> struct BiCoef {
vector<T> fact_, inv_, finv_;
constexpr BiCoef() {}
constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
init(n);
}
constexpr void init(int n) noexcept {
fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
int MOD = fact_[0].getmod();
for(int i = 2; i < n; i++){
fact_[i] = fact_[i-1] * i;
inv_[i] = -inv_[MOD%i] * (MOD/i);
finv_[i] = finv_[i-1] * inv_[i];
}
}
constexpr T com(int n, int k) const noexcept {
if (n < k || n < 0 || k < 0) return 0;
return fact_[n] * finv_[k] * finv_[n-k];
}
constexpr T fact(int n) const noexcept {
if (n < 0) return 0;
return fact_[n];
}
constexpr T inv(int n) const noexcept {
if (n < 0) return 0;
return inv_[n];
}
constexpr T finv(int n) const noexcept {
if (n < 0) return 0;
return finv_[n];
}
};
const int MOD = 1e9+7;
using mint = Fp<MOD>;
template < class T >
struct vec : public vector< T > {
vec() : vector< T >() {}
vec(int n, T e = 0) : vector< T >(n, e) {}
vec(initializer_list< T > v) : vector< T >(v) {}
int size() const { return vector< T >::size(); }
vec& operator+=(const vec& rhs) {
assert(size() == rhs.size());
rep(i,size()) (*this)[i] += rhs[i];
return *this;
}
vec& operator-=(const vec& rhs) {
assert(size() == rhs.size());
rep(i,size()) (*this)[i] -= rhs[i];
return *this;
}
vec& operator*=(T x) {
rep(i,size()) (*this)[i] *= x;
return *this;
}
vec& operator/=(T x) {
x = T(1) / x;
rep(i,size()) (*this)[i] *= x;
return *this;
}
vec operator+(const vec& rhs) const { return vec(*this) += rhs; }
vec operator-(const vec& rhs) const { return vec(*this) -= rhs; }
vec operator*(T x) const { return vec(*this) *= x; }
vec operator/(T x) const { return vec(*this) /= x; }
bool operator==(const vec& rhs) const {
rep(i,size()) if((*this)[i] != rhs[i]) return false;
return true;
}
};
template < class T >
T dot(const vec< T >& a, const vec< T >& b) {
assert(a.size() == b.size());
T res(0);
rep(i,a.size()) res += a[i] * b[i];
return res;
}
template < class T >
struct mat : public vec< vec< T > > {
mat(int h, int w, T e = 0) : vec< vec< T > >(h, vec< T >(w, e)) {}
mat(initializer_list< initializer_list< T > > m) : vec< vec< T > >(m.size()) {
auto it = m.begin();
for(int i = 0; it != m.end(); i++, it++) (*this)[i] = vec< T >(*it);
}
int size() const { return vec< vec< T > >::size(); }
mat operator*(const mat &rhs) const {
int N = (*this).size(), M = (*this)[0].size(), K = rhs[0].size();
assert((*this)[0].size() == rhs.size());
mat res(N, K);
rep(k,M)rep(i,N)rep(j,K) res[i][j] += (*this)[i][k] * rhs[k][j];
return res;
}
mat& operator*=(const mat &rhs) { return *this = (*this) * rhs; }
vec< T > operator*(const vec< T >& rhs) const {
assert((*this)[0].size() == rhs.size());
vec< T > res(size());
rep(i,size()) res[i] = dot((*this)[i], rhs);
return res;
}
vec< T >& operator[](int i) { return vec< vec< T > >::operator[](i); }
const vec< T >& operator[](int i) const { return vec< vec< T > >::operator[](i); }
mat& operator/=(T x) { rep(i,size()) (*this)[i] /= x; return *this; }
mat operator/(T x) const { return (*this) /= x; }
bool operator==(const mat& rhs) const {
rep(i,size()) if((*this)[i] != rhs[i]) return false;
return true;
}
};
template < class T >
struct msq : public mat< T > {
msq(int n, T e = 0) : mat< T >(n, n, e) {}
msq(initializer_list< initializer_list< T > > m) : mat< T >(m) {}
msq unit() const {
msq I((*this).size());
rep(i,(*this).size()) I[i][i] = T(1);
return I;
}
msq pow(ll n) const {
msq res = unit(), A = (*this);
while(n > 0) {
if(n & 1) res *= A;
A *= A;
n >>= 1;
}
return res;
}
T det() const {
msq A = *this;
T res = 1;
rep(i,A.size()) {
if(A[i][i] == T(0)) {
for(int j = i + 1; j < A.size(); j++) if(A[j][i] != T(0)) {
for(int k = i; k < A.size(); k++) swap(A[i][k], A[j][k]);
res *= T(-1);
break;
}
}
if(A[i][i] == T(0)) return T(0);
res *= A[i][i];
const T x = T(1) / A[i][i];
for(int k = i; k < A.size(); k++) A[i][k] *= x;
for(int j = i + 1; j < A.size(); j++) {
const T x = A[j][i];
for(int k = i; k < A.size(); k++) A[j][k] -= A[i][k] * x;
}
}
return res;
}
msq inv() const {
msq A = *this, B = unit();
rep(i,A.size()) {
if(A[i][i] == T(0)) {
for(int j = i + 1; j < A.size(); j++) if(A[j][i] != T(0)) {
for(int k = i; k < A.size(); k++) swap(A[i][k], A[j][k]);
for(int k = 0; k < A.size(); k++) swap(B[i][k], B[j][k]);
break;
}
}
if(A[i][i] == T(0)) throw "this matrix is not regular.";
const T x = T(1) / A[i][i];
for(int k = i; k < A.size(); k++) A[i][k] *= x;
for(int k = 0; k < A.size(); k++) B[i][k] *= x;
for(int j = 0; j < A.size(); j++) if(i != j) {
const T x = A[j][i];
for(int k = i; k < A.size(); k++) A[j][k] -= A[i][k] * x;
for(int k = 0; k < A.size(); k++) B[j][k] -= B[i][k] * x;
}
}
return B;
}
};
int main(){
cin.tie(0);
ios::sync_with_stdio(0);
int N; cin >> N;
vector<ll> A(N), B(N);
rep(i,N) cin >> A[i];
rep(i,N) cin >> B[i];
vector<int> I(N);
iota(I.begin(), I.end(), 0);
sort(I.begin(), I.end(), [&](int i, int j) {
return A[i] * (B[j] - 1) < A[j] * (B[i] - 1);
});
mint ans = 0, x = 1;
for(int i : I) {
ans += mint(A[i]) * x;
x = mint(B[i]) * x;
}
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0