結果
問題 | No.2181 LRM Question 2 |
ユーザー | MasKoaTS |
提出日時 | 2022-10-19 20:00:37 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,894 ms / 2,000 ms |
コード長 | 2,259 bytes |
コンパイル時間 | 149 ms |
コンパイル使用メモリ | 82,248 KB |
実行使用メモリ | 350,708 KB |
最終ジャッジ日時 | 2024-06-29 21:19:22 |
合計ジャッジ時間 | 15,674 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 37 ms
53,012 KB |
testcase_01 | AC | 36 ms
53,736 KB |
testcase_02 | AC | 1,418 ms
278,848 KB |
testcase_03 | AC | 37 ms
52,656 KB |
testcase_04 | AC | 185 ms
124,620 KB |
testcase_05 | AC | 45 ms
65,308 KB |
testcase_06 | AC | 44 ms
64,700 KB |
testcase_07 | AC | 35 ms
59,444 KB |
testcase_08 | AC | 1,752 ms
349,812 KB |
testcase_09 | AC | 1,205 ms
278,824 KB |
testcase_10 | AC | 1,894 ms
347,984 KB |
testcase_11 | AC | 1,876 ms
350,708 KB |
testcase_12 | AC | 1,020 ms
139,656 KB |
testcase_13 | AC | 54 ms
70,364 KB |
testcase_14 | AC | 646 ms
275,012 KB |
testcase_15 | AC | 224 ms
143,456 KB |
testcase_16 | AC | 531 ms
272,620 KB |
testcase_17 | AC | 673 ms
290,484 KB |
testcase_18 | AC | 459 ms
247,736 KB |
testcase_19 | AC | 394 ms
226,704 KB |
testcase_20 | AC | 831 ms
280,900 KB |
testcase_21 | AC | 840 ms
292,228 KB |
testcase_22 | AC | 312 ms
169,332 KB |
testcase_23 | AC | 36 ms
53,444 KB |
testcase_24 | AC | 35 ms
53,008 KB |
testcase_25 | AC | 36 ms
53,628 KB |
ソースコード
import sys input = sys.stdin.readline class BinomialCoefficient: def __init__(self, mod): self.mod = mod self.prime = self.prime_factorize(mod) self.facs = [] self.invs = [] self.pows = [] self.mods = {} for p, c in self.prime: pc = pow(p, c) fac = [1] * pc inv = [1] * pc for i in range(1, pc): k = i if(i % p == 0): k = 1 fac[i] = fac[i - 1] * k % pc inv[-1] = fac[-1] for i in range(pc - 1, 0, -1): k = i if(i % p == 0): k = 1 inv[i - 1] = inv[i] * k % pc self.facs.append(fac) self.invs.append(inv) pw = [1] while(pw[-1] * p != pc): pw.append(pw[-1] * p) self.pows.append(pw) for i in range(mod): r = [i % pow(p, c) for p, c in self.prime] self.mods[tuple(r)] = i def prime_factorize(self, n): prime = [] f = 2 while(f * f <= n): if(n % f == 0): n //= f cnt = 1 while(n % f == 0): n //= f cnt += 1 prime.append((f, cnt)) f += 1 if(n != 1): prime.append((n, 1)) return prime def inv_gcd(self, n, m): n %= m if(n == 0): return m, 0 s, t, m0, m1 = m, n, 0, 1 while(t): u = s // t s -= t * u m0 -= m1 * u m0, m1, s, t = m1, m0, t, s if(m0 < 0): m0 += m // s return s, m0 def inv_mod(self, n, m): g, im = self.inv_gcd(n, m) return im def calc_e(self, n, k, r, p): e = 0 while(n): n //= p e += n while(k): k //= p e -= k while(r): r //= p e -= r return e def lucas(self, n, k, p, c, i): pw = self.pows[i] fac = self.facs[i] inv = self.invs[i] r = n - k pc = pow(p, c) e = self.calc_e(n, k, r, p) if(e >= len(pw)): return 0 ret = pw[e] if((p != 2 or c < 3) and (self.calc_e(n // pw[-1], k // pw[-1], r // pw[-1], p) & 1)): ret *= -1 while(n): ret *= fac[n % pc] * inv[k % pc] * inv[r % pc] ret %= pc n //= p k //= p r //= p return ret def __call__(self, n, k): if(k < 0 or k > n): return 0 if(k == 0 or k == n): return 1 r = [self.lucas(n, k, p, c, i) for i, (p, c) in enumerate(self.prime)] return self.mods[tuple(r)] """ Main Code """ l, r, m = map(int, input().split()) nCk = BinomialCoefficient(m) ans = 0 for i in range(l, r + 1): ans += nCk(2 * i, i) + m - 2 ans %= m print(ans)