結果

問題 No.1127 変形パスカルの三角形
ユーザー ThetaTheta
提出日時 2022-10-20 15:44:21
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
AC  
実行時間 1,120 ms / 1,500 ms
コード長 2,833 bytes
コンパイル時間 163 ms
コンパイル使用メモリ 12,800 KB
実行使用メモリ 11,136 KB
最終ジャッジ日時 2024-06-30 08:26:25
合計ジャッジ時間 21,222 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 31 ms
11,008 KB
testcase_01 AC 1,120 ms
11,008 KB
testcase_02 AC 781 ms
11,008 KB
testcase_03 AC 581 ms
11,008 KB
testcase_04 AC 160 ms
11,008 KB
testcase_05 AC 526 ms
11,008 KB
testcase_06 AC 1,107 ms
10,880 KB
testcase_07 AC 341 ms
11,008 KB
testcase_08 AC 329 ms
11,136 KB
testcase_09 AC 928 ms
11,008 KB
testcase_10 AC 927 ms
10,880 KB
testcase_11 AC 789 ms
10,880 KB
testcase_12 AC 733 ms
11,008 KB
testcase_13 AC 671 ms
11,008 KB
testcase_14 AC 550 ms
11,008 KB
testcase_15 AC 302 ms
11,008 KB
testcase_16 AC 612 ms
11,008 KB
testcase_17 AC 316 ms
11,008 KB
testcase_18 AC 660 ms
11,008 KB
testcase_19 AC 795 ms
11,008 KB
testcase_20 AC 805 ms
11,008 KB
testcase_21 AC 835 ms
11,008 KB
testcase_22 AC 312 ms
11,008 KB
testcase_23 AC 917 ms
11,008 KB
testcase_24 AC 575 ms
11,008 KB
testcase_25 AC 623 ms
11,008 KB
testcase_26 AC 680 ms
10,880 KB
testcase_27 AC 777 ms
11,008 KB
testcase_28 AC 774 ms
10,880 KB
testcase_29 AC 288 ms
11,008 KB
testcase_30 AC 209 ms
11,008 KB
testcase_31 AC 826 ms
11,008 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

from itertools import pairwise
from math import ceil


class Modint:

    MOD = int(1e9+7)

    def __init__(self, value: int) -> None:
        self.num = int(value) % self.MOD

    def __str__(self) -> str:
        return str(self.num)

    __repr__ = __str__

    def __add__(self, __x):
        if isinstance(__x, Modint):
            return Modint((self.num + __x.num))
        return Modint(self.num + __x)

    def __sub__(self, __x):
        if isinstance(__x, Modint):
            return Modint(self.num - __x.num)
        return Modint(self.num - __x)

    def __mul__(self, __x):
        if isinstance(__x, Modint):
            return Modint(self.num * __x.num)
        return Modint(self.num * __x)

    __radd__ = __add__
    __rmul__ = __mul__

    def __rsub__(self, __x):
        if isinstance(__x, Modint):
            return Modint(__x.num - self.num)
        return Modint(__x - self.num)

    def __pow__(self, __x):
        if isinstance(__x, Modint):
            return Modint(pow(self.num, __x.num, self.MOD))
        return Modint(pow(self.num, __x, self.MOD))

    def __rpow__(self, __x):
        if isinstance(__x, Modint):
            return Modint(pow(__x.num, self.num, self.MOD))
        return Modint(pow(__x, self.num, self.MOD))

    def __truediv__(self, __x):
        if isinstance(__x, Modint):
            return Modint(self.num * pow(__x.num, self.MOD - 2, self.MOD))
        return Modint(self.num * pow(__x, self.MOD - 2, self.MOD))

    def __rtruediv__(self, __x):
        if isinstance(__x, Modint):
            return Modint(__x.num * pow(self.num, self.MOD - 2, self.MOD))
        return Modint(__x * pow(self.num, self.MOD - 2, self.MOD))


def main():
    a, b = map(int, input().split())
    n, k = map(int, input().split())

    current_a_coeff = Modint(1)
    current_b_coeff = Modint(0)
    ans_a_coeff = 1
    ans_b_coeff = 0
    coeff_two = Modint(1)
    coeff_ab = Modint(0)
    for k_ in range(1, (n+2)//2):

        current_b_coeff = current_a_coeff
        current_a_coeff = current_a_coeff * (n-k_)/k_
        if k_ == (k-1):
            ans_a_coeff = current_a_coeff
            ans_b_coeff = current_b_coeff
        elif k_ == (n+1-k):
            ans_a_coeff = current_b_coeff
            ans_b_coeff = current_a_coeff
        # current.append([current[-1][0]*(n-k_)//k_, current[-1][0]])
        coeff_two += current_a_coeff ** 2
        coeff_two += current_b_coeff ** 2
        coeff_ab += 4 * current_a_coeff * current_b_coeff
    if n % 2 == 0:
        coeff_two -= current_a_coeff ** 2
        coeff_ab -= 2 * current_a_coeff * current_b_coeff

    print(Modint(a) * ans_a_coeff +
          Modint(b) * ans_b_coeff)
    print(coeff_two * Modint(a)**2 + coeff_two * Modint(b)
          ** 2 + coeff_ab * Modint(a) * Modint(b))


if __name__ == "__main__":
    main()
0