結果
問題 | No.375 立方体のN等分 (1) |
ユーザー | McGregorsh |
提出日時 | 2022-10-27 13:18:46 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,883 bytes |
コンパイル時間 | 159 ms |
コンパイル使用メモリ | 82,072 KB |
実行使用メモリ | 89,684 KB |
最終ジャッジ日時 | 2024-07-04 23:11:53 |
合計ジャッジ時間 | 6,643 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 151 ms
89,340 KB |
testcase_01 | AC | 148 ms
89,472 KB |
testcase_02 | WA | - |
testcase_03 | AC | 150 ms
89,344 KB |
testcase_04 | AC | 148 ms
88,832 KB |
testcase_05 | AC | 141 ms
89,216 KB |
testcase_06 | AC | 147 ms
89,472 KB |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 142 ms
88,944 KB |
testcase_10 | AC | 146 ms
88,960 KB |
testcase_11 | AC | 147 ms
89,472 KB |
testcase_12 | AC | 152 ms
89,600 KB |
testcase_13 | AC | 150 ms
88,960 KB |
testcase_14 | WA | - |
testcase_15 | AC | 146 ms
88,832 KB |
testcase_16 | AC | 147 ms
89,496 KB |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | AC | 151 ms
89,216 KB |
testcase_20 | AC | 147 ms
89,344 KB |
testcase_21 | AC | 149 ms
89,216 KB |
testcase_22 | WA | - |
testcase_23 | AC | 149 ms
89,472 KB |
testcase_24 | AC | 144 ms
89,472 KB |
testcase_25 | AC | 147 ms
89,216 KB |
testcase_26 | AC | 149 ms
89,088 KB |
testcase_27 | AC | 148 ms
88,960 KB |
testcase_28 | AC | 147 ms
89,576 KB |
testcase_29 | AC | 148 ms
89,088 KB |
testcase_30 | AC | 151 ms
89,044 KB |
testcase_31 | AC | 152 ms
89,344 KB |
testcase_32 | AC | 150 ms
89,684 KB |
testcase_33 | AC | 148 ms
89,344 KB |
ソースコード
###素因数分解### def prime_factorize(n: int) -> list: return_list = [] while n % 2 == 0: return_list.append(2) n //= 2 f = 3 while f * f <= n: if n % f == 0: return_list.append(f) n //= f else: f += 2 if n != 1: return_list.append(n) return return_list ###ある数が素数かどうかの判定### def is_prime(n): if n < 2: return False i = 2 while i * i <= n: if n % i == 0: return False i += 1 return True ###N以下の素数列挙### import math def sieve_of_eratosthenes(n): prime = [True for i in range(n+1)] prime[0] = False prime[1] = False sqrt_n = math.ceil(math.sqrt(n)) for i in range(2, sqrt_n+1): if prime[i]: for j in range(2*i, n+1, i): prime[j] = False return prime ###N以上K以下の素数列挙### import math def segment_sieve(a, b): sqrt_b = math.ceil(math.sqrt(b)) prime_small = [True for i in range(sqrt_b)] prime = [True for i in range(b-a+1)] for i in range(2, sqrt_b): if prime_small[i]: for j in range(2*i, sqrt_b, i): prime_small[j] = False for j in range((a+i-1)//i*i, b+1, i): #print('j: ', j) prime[j-a] = False return prime ###n進数から10進数変換### def base_10(num_n,n): num_10 = 0 for s in str(num_n): num_10 *= n num_10 += int(s) return num_10 ###10進数からn進数変換### def base_n(num_10,n): str_n = '' while num_10: if num_10%n>=10: return -1 str_n += str(num_10%n) num_10 //= n return int(str_n[::-1]) ###複数の数の最大公約数、最小公倍数### from functools import reduce # 最大公約数 def gcd_list(num_list: list) -> int: return reduce(gcd, num_list) # 最小公倍数 def lcm_base(x: int, y: int) -> int: return (x * y) // gcd(x, y) def lcm_list(num_list: list): return reduce(lcm_base, num_list, 1) ###約数列挙### def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i * i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] ###順列### def nPr(n, r): npr = 1 for i in range(n, n-r, -1): npr *= i return npr ###組合せ### def nCr(n, r): factr = 1 r = min(r, n - r) for i in range(r, 1, -1): factr *= i return nPr(n, r)/factr ###組合せMOD### def comb(n,k): nCk = 1 MOD = 10**9+7 for i in range(n-k+1, n+1): nCk *= i nCk %= MOD for i in range(1,k+1): nCk *= pow(i,MOD-2,MOD) nCk %= MOD return nCk import sys, re from fractions import Fraction from math import ceil, floor, sqrt, pi, factorial, gcd from copy import deepcopy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import accumulate, product, combinations, combinations_with_replacement, permutations from bisect import bisect, bisect_left, bisect_right from functools import reduce from decimal import Decimal, getcontext, ROUND_HALF_UP def i_input(): return int(input()) def i_map(): return map(int, input().split()) def i_list(): return list(i_map()) def i_row(N): return [i_input() for _ in range(N)] def i_row_list(N): return [i_list() for _ in range(N)] def s_input(): return input() def s_map(): return input().split() def s_list(): return list(s_map()) def s_row(N): return [s_input for _ in range(N)] def s_row_str(N): return [s_list() for _ in range(N)] def s_row_list(N): return [list(s_input()) for _ in range(N)] def lcm(a, b): return a * b // gcd(a, b) def get_distance(x1, y1, x2, y2): d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return d def rotate(table): n_fild = [] for x in zip(*table[::-1]): n_fild.append(x) return n_fild sys.setrecursionlimit(10 ** 7) INF = float('inf') MOD = 10 ** 9 + 7 MOD2 = 998244353 ###関数コピーしたか?### def main(): N = int(input()) nums = prime_factorize(N) nums.sort(reverse=True) a = 1 b = 1 c = 1 for i in range(len(nums)): p = nums[i] if a > b and a < c: b *= p elif a > b and a == c: b *= p elif a > b and a > c: if b > c: c *= p elif b == c: c *= p else: b *= p elif a == b and a < c: a *= p elif a == b and a == c: a *= p elif a == b and a > c: c *= p elif a < b and a < c: a *= p elif a < b and a == c: a *= p elif a < b and a > c: c *= p ans = (a + b + c) - 3 print(ans, N-1) if __name__ == '__main__': main()