結果

問題 No.375 立方体のN等分 (1)
ユーザー McGregorshMcGregorsh
提出日時 2022-10-27 13:18:46
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 4,883 bytes
コンパイル時間 159 ms
コンパイル使用メモリ 82,072 KB
実行使用メモリ 89,684 KB
最終ジャッジ日時 2024-07-04 23:11:53
合計ジャッジ時間 6,643 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 151 ms
89,340 KB
testcase_01 AC 148 ms
89,472 KB
testcase_02 WA -
testcase_03 AC 150 ms
89,344 KB
testcase_04 AC 148 ms
88,832 KB
testcase_05 AC 141 ms
89,216 KB
testcase_06 AC 147 ms
89,472 KB
testcase_07 WA -
testcase_08 WA -
testcase_09 AC 142 ms
88,944 KB
testcase_10 AC 146 ms
88,960 KB
testcase_11 AC 147 ms
89,472 KB
testcase_12 AC 152 ms
89,600 KB
testcase_13 AC 150 ms
88,960 KB
testcase_14 WA -
testcase_15 AC 146 ms
88,832 KB
testcase_16 AC 147 ms
89,496 KB
testcase_17 WA -
testcase_18 WA -
testcase_19 AC 151 ms
89,216 KB
testcase_20 AC 147 ms
89,344 KB
testcase_21 AC 149 ms
89,216 KB
testcase_22 WA -
testcase_23 AC 149 ms
89,472 KB
testcase_24 AC 144 ms
89,472 KB
testcase_25 AC 147 ms
89,216 KB
testcase_26 AC 149 ms
89,088 KB
testcase_27 AC 148 ms
88,960 KB
testcase_28 AC 147 ms
89,576 KB
testcase_29 AC 148 ms
89,088 KB
testcase_30 AC 151 ms
89,044 KB
testcase_31 AC 152 ms
89,344 KB
testcase_32 AC 150 ms
89,684 KB
testcase_33 AC 148 ms
89,344 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

###素因数分解###

def prime_factorize(n: int) -> list:
   return_list = []
   while n % 2 == 0:
   	  return_list.append(2)
   	  n //= 2
   f = 3
   while f * f <= n:
   	  if n % f == 0:
   	  	  return_list.append(f)
   	  	  n //= f
   	  else:
   	  	  f += 2
   if n != 1:
   	  return_list.append(n)
   return return_list


###ある数が素数かどうかの判定###

def is_prime(n):
    if n < 2:
        return False
    i = 2
    while i * i <= n:
        if n % i == 0:
            return False
        i += 1
    return True
    

###N以下の素数列挙###

import math 
def sieve_of_eratosthenes(n):
	  prime = [True for i in range(n+1)]
	  prime[0] = False
	  prime[1] = False
	  
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n+1):
	  	  if prime[i]:
	  	  	  for j in range(2*i, n+1, i):
	  	  	  	  prime[j] = False
	  return prime


###N以上K以下の素数列挙###

import math

def segment_sieve(a, b):
	  sqrt_b = math.ceil(math.sqrt(b))
	  prime_small = [True for i in range(sqrt_b)]
	  prime = [True for i in range(b-a+1)]
	  
	  for i in range(2, sqrt_b):
	  	  if prime_small[i]:
	  	  	  for j in range(2*i, sqrt_b, i):
	  	  	  	  prime_small[j] = False
	  	  	  for j in range((a+i-1)//i*i, b+1, i):
	  	  	  	  #print('j: ', j)
	  	  	  	  prime[j-a] = False
	  return prime


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)/factr


###組合せMOD###

def comb(n,k):
    nCk = 1
    MOD = 10**9+7

    for i in range(n-k+1, n+1):
        nCk *= i
        nCk %= MOD

    for i in range(1,k+1):
        nCk *= pow(i,MOD-2,MOD)
        nCk %= MOD
    return nCk


import sys, re
from fractions import Fraction
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext, ROUND_HALF_UP
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
def rotate(table):
   	  n_fild = []
   	  for x in zip(*table[::-1]):
   	  	  n_fild.append(x)
   	  return n_fild
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353


###関数コピーしたか?###
def main():
   
   N = int(input())
   
   nums = prime_factorize(N)
   nums.sort(reverse=True)
   a = 1
   b = 1
   c = 1
   for i in range(len(nums)):
   	  p = nums[i]
   	  if a > b and a < c:
   	  	  b *= p
   	  elif a > b and a == c:
   	  	  b *= p
   	  elif a > b and a > c:
   	  	  if b > c:
   	  	  	  c *= p
   	  	  elif b == c:
   	  	  	  c *= p
   	  	  else:
   	  	  	  b *= p
   	  elif a == b and a < c:
   	  	  a *= p
   	  elif a == b and a == c:
   	  	  a *= p
   	  elif a == b and a > c:
   	  	  c *= p
   	  elif a < b and a < c:
   	  	  a *= p
   	  elif a < b and a == c:
   	  	  a *= p
   	  elif a < b and a > c:
   	  	  c *= p
   
   ans = (a + b + c) - 3
   print(ans, N-1)
   
   
if __name__ == '__main__':
    main()
0