結果
問題 | No.2127 Mod, Sum, Sum, Mod |
ユーザー |
👑 |
提出日時 | 2022-10-28 12:29:46 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,858 bytes |
コンパイル時間 | 1,985 ms |
コンパイル使用メモリ | 194,172 KB |
最終ジャッジ日時 | 2025-02-08 13:49:28 |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 WA * 1 |
other | AC * 23 WA * 4 |
ソースコード
#include<bits/stdc++.h> using namespace std; using ll = long long; #define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define QUIT return 0 #define RETURN( ANSWER ) cout << ( ANSWER ) << "\n"; QUIT #define MIN( A , B ) ( A < B ? A : B ) #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; cin >> VARIABLE_FOR_CHECK_REDUNDANT_INPUT; assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin ); // #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; getline( cin , VARIABLE_FOR_CHECK_REDUNDANT_INPUT ); assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin ); int main() { UNTIE; constexpr const ll bound = 1000000000; CIN_ASSERT( N , 1 , bound ); CIN_ASSERT( M , 1 , bound ); // CHECK_REDUNDANT_INPUT; // sum( ll i = 1 ; i <= N ; i++ ) sum( ll j = 1 ; j <= M ; j++ ){ i % j } // = sum( ll i = 1 ; i <= N ; i++ ) sum( ll j = 1 ; j <= M ; j++ ){ i - ( i / j ) * j } // = M * sum( ll i = 1 ; i <= N ; i++ ){ i } // - sum( ll i = 1 ; i <= N ; i++ ) sum( ll j = 1 ; j <= M ; j++ ){ ( i / j ) * j } // = M * ( N * ( N + 1 ) ) / 2 // - sum( ll j = 1 ; j <= M ; j++ ){ j * sum( ll i = 1 ; i <= N ; i++ ){ i / j } } // = M * ( N * ( N + 1 ) ) / 2 // - sum( ll j = 1 ; j <= M ; j++ ){ j * ( j * ( ( N / j - 1 ) * ( N / j ) ) / 2 + ( N - j * ( N / j ) + 1 ) * ( N / j ) ) } // = M * ( N * ( N + 1 ) ) / 2 // - sum( ll j = 1 ; j <= M ; j++ ){ j ^ 2 * ( ( ( N / j - 1 ) * ( N / j ) ) / 2 - ( N / j ) ^ 2 ) + j * ( N + 1 ) * ( N / j ) } // = M * ( N * ( N + 1 ) ) / 2 // - sum( ll j = 1 ; j <= M ; j++ ){ j * ( N + 1 ) * ( N / j ) - j ^ 2 * ( ( ( N / j ) * ( N / j + 1 ) ) / 2 ) } // = M * ( N * ( N + 1 ) ) / 2 // - sum( ll j = 1 ; j <= min( 31622 , M ) ; j++ ){ j * ( N + 1 ) * ( N / j ) - j ^ 2 * ( ( ( N / j ) * ( N / j + 1 ) ) / 2 ) } // - sum( ll j = 31622 ; j <= M ; j++ ){ j * ( N + 1 ) * ( N / j ) - j ^ 2 * ( ( ( N / j ) * ( N / j + 1 ) ) / 2 ) } // = M * ( N * ( N + 1 ) ) / 2 // - sum( ll j = 1 ; j <= min( 31622 , M ) ; j++ ){ j * ( ( N + 1 ) * ( N / j ) - j * ( ( ( N / j ) * ( N / j + 1 ) ) / 2 ) } // - sum( ll h = N / M ; h <= N / 31622 ) sum( ll j = N / ( h + 1 ) + 1 ; j <= N / h ; j++ ){ j * ( N + 1 ) * ( N / j ) - j ^ 2 * ( ( ( N / j ) * ( N / j + 1 ) ) / 2 ) } // = M * ( N * ( N + 1 ) ) / 2 // - sum( ll j = 1 ; j <= min( 31622 , M ) ; j++ ){ j * ( ( N + 1 ) * ( N / j ) - j * ( ( ( N / j ) * ( N / j + 1 ) ) / 2 ) } // - sum( ll h = N / M ; h <= N / 31622 ){ ( N + 1 ) * ( ( ( N / h - N / ( h + 1 ) ) * ( N / h + N / ( h + 1 ) + 1 ) ) / 2 ) * h - ( ( ( N / h ) * ( N / h ) * ( 2 * ( N / h ) + 1 ) ) / 6 - ( ( N / ( h + 1 ) ) * ( N / ( h + 1 ) ) * ( 2 * ( N / ( h + 1 ) ) + 1 ) ) / 6 ) * ( ( h * ( h + 1 ) ) / 2 ) } // = M * ( N * ( N + 1 ) ) / 2 // - sum( ll j = 1 ; j <= min( 31622 , M ) ; j++ ){ j * ( ( N + 1 ) * ( N / j ) - j * ( ( ( N / j ) * ( N / j + 1 ) ) / 2 ) } // - ( ( N + 1 ) * sum( ll h = N / M ; h <= N / 31622 ){ ( N / h - N / ( h + 1 ) ) * ( N / h + N / ( h + 1 ) + 1 ) * h } ) / 2 // + ( sum( ll h = N / M ; h <= N / 31622 ){ ( ( N / h ) * ( N / h + 1 ) * ( 2 * ( N / h ) + 1 ) - ( N / ( h + 1 ) ) * ( N / ( h + 1 ) + 1 ) * ( 2 * ( N / ( h + 1 ) ) + 1 ) ) * h * ( h + 1 ) } ) / 12 constexpr const ll P = 998244353; ll answer0 = ( M * ( ( ( N * ( N + 1 ) ) / 2 ) % P ) ) % P; ll answer1 = 0; ll answer2 = 0; ll answer3 = 0; constexpr const ll sqrt_bound = 31622; ll border = MIN( sqrt_bound , M ); if( border > N ){ border = N; } FOREQ( j , 1 , border ){ answer1 += ( j * ( ( N + 1 ) * ( N / j ) - j * ( ( ( N / j ) * ( N / j + 1 ) ) / 2 ) ) ) % P; } answer1 %= P; ll N_div_min = N > M ? N / M : 1; ll N_div_max = N / sqrt_bound; FOREQ( h , N_div_min , N_div_max ){ answer2 += ( ( N / h - N / ( h + 1 ) ) * ( N / h + N / ( h + 1 ) + 1 ) * h ) % P; answer3 += ( ( ( ( ( N / h ) * ( ( ( N / h + 1 ) * ( 2 * ( N / h ) + 1 ) ) % P ) - ( N / ( h + 1 ) ) * ( ( ( N / ( h + 1 ) + 1 ) * ( 2 * ( N / ( h + 1 ) ) + 1 ) ) % P ) ) * h ) % P ) * ( h + 1 ) ) % P; } constexpr const ll inv_2 = ( P + 1 ) / 2; constexpr const ll inv_3 = P - ( ( P / 3 ) * inv_2 ) % P; constexpr const ll inv_12 = ( inv_2 * ( ( inv_3 * inv_3 ) % P ) ) % P; answer2 = ( ( ( ( N + 1 ) * ( answer2 % P ) ) % P ) * inv_2 ) % P; answer3 = ( ( answer3 % P ) * inv_12 ) % P; RETURN( ( answer0 + ( P - answer1 ) + ( P - answer2 ) + answer3 ) % P ); }