結果
| 問題 |
No.2127 Mod, Sum, Sum, Mod
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2022-10-28 16:08:59 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,114 ms / 2,000 ms |
| コード長 | 4,831 bytes |
| コンパイル時間 | 1,819 ms |
| コンパイル使用メモリ | 195,176 KB |
| 最終ジャッジ日時 | 2025-02-08 13:52:12 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
ソースコード
// 愚直解との折衷で検算(2つ前の提出はミス、1つ前の提出はO(min(M,N))じゃなくてO(M))
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define QUIT return 0
#define RETURN( ANSWER ) cout << ( ANSWER ) << "\n"; QUIT
int main()
{
UNTIE;
constexpr const ll bound = 1000000000;
CIN_ASSERT( N , 1 , bound );
CIN_ASSERT( M , 1 , bound );
// sum( ll i = 1 ; i <= N ; i++ ) sum( ll j = 1 ; j <= M ; j++ ){ i % j }
// = sum( ll j = 1 ; j <= M ; j++ ) sum( ll i = 1 ; i <= N ; i++ ){ i % j }
// = sum( ll j = 1 ; j <= M ; j++ ){ ( N / j ) * ( ( j - 1 ) * j ) / 2 + ( N % j ) * ( N % j + 1 ) / 2 }
constexpr const ll P = 998244353;
if( M < 100000000 ){
ll answer0 = 0;
ll answer1 = 0;
ll N_r;
ll j_sum = 0;
FOREQ( j , 1 , M ){
N_r = N % j;
j_sum = ( j_sum + j - 1 ) % P;
answer0 += ( ( N / j ) * j_sum ) % P;
answer1 += ( N_r * ( N_r + 1 ) ) % P;
}
answer1 = ( answer1 % P ) * ( ( P + 1 ) / 2 );
RETURN( ( answer0 + answer1 ) % P );
}
// sum( ll i = 1 ; i <= N ; i++ ) sum( ll j = 1 ; j <= M ; j++ ){ i % j }
// = sum( ll i = 1 ; i <= N ; i++ ) sum( ll j = 1 ; j <= M ; j++ ){ i - ( i / j ) * j }
// = M * sum( ll i = 1 ; i <= N ; i++ ){ i }
// - sum( ll i = 1 ; i <= N ; i++ ) sum( ll j = 1 ; j <= M ; j++ ){ ( i / j ) * j }
// = M * ( N * ( N + 1 ) ) / 2
// - sum( ll j = 1 ; j <= M ; j++ ){ j * sum( ll i = 1 ; i <= N ; i++ ){ i / j } }
// = M * ( N * ( N + 1 ) ) / 2
// - sum( ll j = 1 ; j <= M ; j++ ){ j * ( j * ( ( N / j - 1 ) * ( N / j ) ) / 2 + ( N - j * ( N / j ) + 1 ) * ( N / j ) ) }
// = M * ( N * ( N + 1 ) ) / 2
// - sum( ll j = 1 ; j <= M ; j++ ){ j ^ 2 * ( ( ( N / j - 1 ) * ( N / j ) ) / 2 - ( N / j ) ^ 2 ) + j * ( N + 1 ) * ( N / j ) }
// = M * ( N * ( N + 1 ) ) / 2
// - sum( ll j = 1 ; j <= M ; j++ ){ j * ( N + 1 ) * ( N / j ) - j ^ 2 * ( ( ( N / j ) * ( N / j + 1 ) ) / 2 ) }
// = M * ( N * ( N + 1 ) ) / 2
// - sum( ll j = 1 ; j <= min( N / ( N / 31622 ) - 1 , M ) ; j++ ){ j * ( N + 1 ) * ( N / j ) - j ^ 2 * ( ( ( N / j ) * ( N / j + 1 ) ) / 2 ) }
// - sum( ll j = N / ( N / 31622 ) ; j <= M ; j++ ){ j * ( N + 1 ) * ( N / j ) - j ^ 2 * ( ( ( N / j ) * ( N / j + 1 ) ) / 2 ) }
ll answer0 = ( M * ( ( ( N * ( N + 1 ) ) / 2 ) % P ) ) % P;
ll answer1 = 0;
ll answer2 = 0;
ll answer3 = 0;
constexpr const ll sqrt_bound = 31622;
ll h = N / sqrt_bound;
// N / j > h
// <=> N / j >= h + 1
// <=> N / ( 1.0 * j ) >= h + 1
// <=> N >= ( h + 1 ) * j
// <=> N / ( h + 1 ) >= j
ll border = N / ( h + 1 );
if( M > N ){
M = N;
}
if( border > M ){
border = M;
}
FOREQ( j , 1 , border ){
answer1 += ( j * ( ( N + 1 ) * ( N / j ) - j * ( ( ( N / j ) * ( N / j + 1 ) ) / 2 ) ) ) % P;
}
answer1 %= P;
ll j_prev = border;
ll j_curr = ( h > 0 ? N / h : N + 1 );
ll sum_prev = j_prev * ( j_prev + 1 );
ll sum_curr;
ll square_sum_prev = ( j_prev * ( j_prev + 1 ) * ( 2 * j_prev + 1 ) ) % P;
ll square_sum_curr;
while( j_curr <= M ){
sum_curr = j_curr * ( j_curr + 1 );
square_sum_curr = ( j_curr * ( ( ( j_curr + 1 ) * ( 2 * j_curr + 1 ) ) % P ) ) % P;
answer2 += ( ( ( sum_curr - sum_prev ) % P ) * h ) % P;
answer3 += ( ( ( ( ( square_sum_curr + P - square_sum_prev ) % P ) * h ) % P ) * ( h + 1 ) ) % P;
j_prev = j_curr;
sum_prev = sum_curr;
square_sum_prev = square_sum_curr;
// h = N / j
// <=> N / ( i.0 * j ) - 1 < h <= N / ( 1.0 * j )
// <=> N - j < h * j <= N
// <=> h * j <= N < ( h + 1 ) * j
// <=> N / ( 1.0 * ( h + 1 ) ) < j <= N / ( 1.0 * h )
// <=> N / ( 1.0 * ( h + 1 ) ) < j <= N / h
// exists j[ h = N / j ]
// <=> N / ( 1.0 * ( h + 1 ) ) < N / h
// <=> N < ( N / h ) * ( h + 1 )
if( h > 1 && j_curr < M ){
h--;
j_curr = N / h ;
while( N >= j_curr * ( h + 1 ) ){
h--;
j_curr = N / h ;
}
if( j_curr > M ){
j_curr = M;
}
} else {
break;
}
}
constexpr const ll inv_2 = ( P + 1 ) / 2;
constexpr const ll inv_3 = P - ( ( P / 3 ) * inv_2 ) % P;
constexpr const ll inv_12 = ( ( ( inv_2 * inv_2 ) % P ) * inv_3 ) % P;
answer2 = ( ( ( ( N + 1 ) * ( answer2 % P ) ) % P ) * inv_2 ) % P;
answer3 = ( ( answer3 % P ) * inv_12 ) % P;
RETURN( ( answer0 + ( P - answer1 ) + ( P - answer2 ) + answer3 ) % P );
}