結果
問題 | No.2111 Sum of Diff |
ユーザー |
|
提出日時 | 2022-10-31 14:20:45 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 2,211 bytes |
コンパイル時間 | 119 ms |
コンパイル使用メモリ | 12,928 KB |
実行使用メモリ | 32,996 KB |
最終ジャッジ日時 | 2024-07-08 03:37:10 |
合計ジャッジ時間 | 24,793 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 14 TLE * 6 |
ソースコード
from functools import lru_cache class Modint: MOD = 998244353 def __init__(self, value: int) -> None: self.num = int(value) % self.MOD def __str__(self) -> str: return str(self.num) __repr__ = __str__ def __add__(self, __x): if isinstance(__x, Modint): return Modint((self.num + __x.num)) return Modint(self.num + __x) def __sub__(self, __x): if isinstance(__x, Modint): return Modint(self.num - __x.num) return Modint(self.num - __x) def __mul__(self, __x): if isinstance(__x, Modint): return Modint(self.num * __x.num) return Modint(self.num * __x) __radd__ = __add__ __rmul__ = __mul__ def __rsub__(self, __x): if isinstance(__x, Modint): return Modint(__x.num - self.num) return Modint(__x - self.num) def __pow__(self, __x): if isinstance(__x, Modint): return Modint(pow(self.num, __x.num, self.MOD)) return Modint(pow(self.num, __x, self.MOD)) def __rpow__(self, __x): if isinstance(__x, Modint): return Modint(pow(__x.num, self.num, self.MOD)) return Modint(pow(__x, self.num, self.MOD)) def __truediv__(self, __x): if isinstance(__x, Modint): return Modint(self.num * pow(__x.num, self.MOD - 2, self.MOD)) return Modint(self.num * pow(__x, self.MOD - 2, self.MOD)) def __rtruediv__(self, __x): if isinstance(__x, Modint): return Modint(__x.num * pow(self.num, self.MOD - 2, self.MOD)) return Modint(__x * pow(self.num, self.MOD - 2, self.MOD)) @lru_cache def power_of_two(power: int | Modint) -> Modint: if power == 0: return Modint(1) return Modint(2) * power_of_two(power-1) def main(): N = int(input()) A = list(map(int, input().split())) for idx in range(N): power_of_two(idx) sum_ = Modint(0) for idx, value in enumerate(A): start_patterns = Modint(2) ** (N - 1 - idx) - 1 end_patterns = Modint(2) ** idx - 1 sum_ += value * (start_patterns - end_patterns) print(sum_) if __name__ == "__main__": main()