結果
問題 | No.2117 中国剰余定理入門 |
ユーザー | siganai |
提出日時 | 2022-11-04 21:24:24 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 10,611 bytes |
コンパイル時間 | 2,631 ms |
コンパイル使用メモリ | 229,552 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-18 19:07:51 |
合計ジャッジ時間 | 3,148 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
ソースコード
#line 1 "test.cpp" //#pragma GCC target("avx") //#pragma GCC optimize("O3") //#pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> #ifdef LOCAL #include <debug.hpp> #define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else #define debug(...) (static_cast<void>(0)) #endif using namespace std; using ll = long long; using ld = long double; using pll = pair<ll,ll>; using pii = pair<int,int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vpii = vector<pii>; using vpll = vector<pll>; using vs = vector<string>; template<class T> using pq = priority_queue<T,vector<T>,greater<T>>; #define overload4(_1, _2, _3, _4, name, ...) name #define overload3(a,b,c,name,...) name #define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER) #define rep2(i, n) for (ll i = 0; i < (n); ++i) #define rep3(i, a, b) for (ll i = (a); i < (b); ++i) #define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) for(ll i = (n) - 1;i >= 0;i--) #define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--) #define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--) #define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c) #define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define all1(i) begin(i),end(i) #define all2(i,a) begin(i),begin(i)+a #define all3(i,a,b) begin(i)+a,begin(i)+b #define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__) #define sum(...) accumulate(all(__VA_ARGS__),0LL) template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; } template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; } template<class T> auto min(const T& a){ return *min_element(all(a)); } template<class T> auto max(const T& a){ return *max_element(all(a)); } template<class... Ts> void in(Ts&... t); #define INT(...) int __VA_ARGS__; in(__VA_ARGS__) #define LL(...) ll __VA_ARGS__; in(__VA_ARGS__) #define STR(...) string __VA_ARGS__; in(__VA_ARGS__) #define CHR(...) char __VA_ARGS__; in(__VA_ARGS__) #define DBL(...) double __VA_ARGS__; in(__VA_ARGS__) #define LD(...) ld __VA_ARGS__; in(__VA_ARGS__) #define VEC(type, name, size) vector<type> name(size); in(name) #define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name) ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;} ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; } ll GCD(ll a,ll b) { if(a == 0 || b == 0) return a + b; if(a % b == 0) return b; else return GCD(b,a%b);} ll LCM(ll a,ll b) { if(a == 0) return b; if(b == 0) return a;return a / GCD(a,b) * b;} namespace IO{ #define VOID(a) decltype(void(a)) struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(12);}} setting; template<int I> struct P : P<I-1>{}; template<> struct P<0>{}; template<class T> void i(T& t){ i(t, P<3>{}); } void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; } template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; } template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); } template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){ in(get<idx>(t)...);} template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ ituple(t, make_index_sequence<tuple_size<T>::value>{});} #undef VOID } #define unpack(a) (void)initializer_list<int>{(a, 0)...} template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); } #undef unpack constexpr int mod = 1000000007; //constexpr int mod = 998244353; static const double PI = 3.1415926535897932; template <class F> struct REC { F f; REC(F &&f_) : f(forward<F>(f_)) {} template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }}; #line 3 "library/math/garner.hpp" using namespace std; #line 3 "library/math/factorize.hpp" using namespace std; vector<pair<long long,int>> prime_factorization(long long n) { vector<pair<long long,int>> ret; int c = 0; while(n % 2 == 0) { c++; n >>= 1; } if(c) ret.emplace_back(2,c); for(long long i = 3; i * i <= n; i += 2) { c = 0; while(n % i == 0) { n /= i; c++; } if(c) ret.emplace_back(i,c); } if (n != 1) ret.emplace_back(n,1); return ret; } vector<long long> divisor(long long n) { vector<long long> ret; for(long long i = 1; i * i <= n; i++) { if (n % i == 0) { ret.push_back(i); if(i * i != n) {ret.push_back(n / i);} } } sort(ret.begin(),ret.end()); return ret; } #line 3 "library/modint/barrett-reduction.hpp" using namespace std; struct Barrett { using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; u32 m; u64 im; Barrett() : m(), im() {} Barrett(int n) : m(n), im(u64(-1) / m + 1) {} constexpr inline i64 quo(u64 n) { u64 x = u64((__uint128_t(n) * im) >> 64); u32 r = n - x * m; return m <= r ? x - 1 : x; } constexpr inline i64 rem(u64 n) { u64 x = u64((__uint128_t(n) * im) >> 64); u32 r = n - x * m; return m <= r ? r + m : r; } constexpr inline pair<i64, int> quorem(u64 n) { u64 x = u64((__uint128_t(n) * im) >> 64); u32 r = n - x * m; if (m <= r) return {x - 1, r + m}; return {x, r}; } constexpr inline i64 pow(u64 n, i64 p) { u32 a = rem(n), r = m == 1 ? 0 : 1; while (p) { if (p & 1) r = rem(u64(r) * a); a = rem(u64(a) * a); p >>= 1; } return r; } }; #line 4 "library/modint/ArbitaryModint.hpp" using namespace std; struct ArbitraryModint { int x; ArbitraryModint():x(0) {} ArbitraryModint(int64_t y) { int z = y % get_mod(); if(z < 0) z += get_mod(); x = z; } ArbitraryModint &operator+=(const ArbitraryModint &p) { if((x += p.x) >= get_mod()) x -= get_mod(); return *this; } ArbitraryModint &operator-=(const ArbitraryModint &p) { if((x += get_mod() - p.x) >= get_mod()) x -= get_mod(); return *this; } ArbitraryModint &operator*=(const ArbitraryModint &p) { x = rem((unsigned long long)x * p.x); return *this; } ArbitraryModint &operator/=(const ArbitraryModint &p) { *this *= p.inverse(); return *this; } ArbitraryModint operator-() const {return ArbitraryModint(-x);}; ArbitraryModint operator+(const ArbitraryModint &p) const{ return ArbitraryModint(*this) += p; } ArbitraryModint operator-(const ArbitraryModint &p) const{ return ArbitraryModint(*this) -= p; } ArbitraryModint operator*(const ArbitraryModint &p) const{ return ArbitraryModint(*this) *= p; } ArbitraryModint operator/(const ArbitraryModint &p) const { return ArbitraryModint(*this) /= p; } bool operator==(const ArbitraryModint &p) {return x == p.x;} bool operator!=(const ArbitraryModint &p) {return x != p.x;} ArbitraryModint inverse() const { int a = x,b = get_mod(),u = 1,v = 0,t; while(b > 0) { t = a / b; swap(a -= t * b,b); swap(u -= t * v,v); } return ArbitraryModint(u); } ArbitraryModint pow(int64_t n) const { ArbitraryModint ret(1),mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os,const ArbitraryModint &p) { return os << p.x; } friend istream &operator>>(istream &is,ArbitraryModint &a) { int64_t t; is >> t; a = ArbitraryModint(t); return (is); } int get() const {return x;} inline unsigned int rem(unsigned long long p) {return barrett().rem(p);}; static inline Barrett &barrett() { static Barrett b; return b; } static inline int &get_mod() { static int mod = 0; return mod; } static void set_mod(int md) { assert(0 < md && md <= (1LL << 30) - 1); get_mod() = md; barrett() = Barrett(md); } }; #line 6 "library/math/garner.hpp" using mint = ArbitraryModint; //存在しない時、-1を返す template<typename T,typename U> long long garner(vector<T> rem,vector<U> MOD, long long new_mod = -1, bool coprime = true) { assert (rem.size() == MOD.size()); int n = rem.size(); using u64 = unsigned long long; if(!coprime) { unordered_map<long long,vector<pair<long long,long long>>> mp; for(int i = 0;i < n;++i) { for(auto [p,e]:prime_factorization(MOD[i])) { int m = 1; for(int j = 0;j < e;++j) m *= p; mp[p].emplace_back(rem[i] % m,m); } } vector<T> xx; vector<U> mm; for(auto &[p,dat]:mp) { int M = 1; int val = 0; for(auto &[x,m]:dat) { if(M < m) { M = m; val = x; } } for(auto &[x,m]:dat) { if((val - x) % m != 0) return -1; } xx.emplace_back(val); mm.emplace_back(M); } swap(rem,xx); swap(MOD,mm); n = (int)rem.size(); } vector<ll> cfs(n); for(int i = 0;i < n;++i) { mint::set_mod(MOD[i]); long long a = rem[i]; long long prod = 1; for(int j = 0;j < i;++j) { a = (mint(cfs[j]) * (-prod) + a).x; prod = (mint(prod) * MOD[j]).x; } cfs[i] = (mint(prod).inverse() * a).x; } long long ret = 0; long long prod = 1; for(int i = 0;i < n;++i) { ret += prod * cfs[i]; prod *= MOD[i]; if(new_mod != -1) { ret %= new_mod; prod %= new_mod; } } return ret; } #line 87 "test.cpp" int main() { vi b(2),c(2); rep(i,2) cin >> b[i] >> c[i]; rep(i,2) { c[i] %= b[i]; if(c[i] < 0) c[i] += b[i]; } int x = garner<int,int>(c,b,-1,false); if(x == -1) cout << "NaN" << '\n'; else cout << x << '\n'; }