結果

問題 No.2120 場合の数の下8桁
ユーザー ecotteaecottea
提出日時 2022-11-04 21:53:32
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 11 ms / 2,000 ms
コード長 8,343 bytes
コンパイル時間 4,053 ms
コンパイル使用メモリ 237,124 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-18 19:38:14
合計ジャッジ時間 4,321 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-12;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
// Visual Studio
#ifdef _MSC_VER
#include "local.hpp"
// gcc
#else
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
#endif //
//--------------AtCoder --------------
#include <atcoder/all>
using namespace atcoder;
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
//----------------------------------------
//
/*
* Factorial_arbitrary_mod(int m, int n_max) : O(min(m, n_max))
* m n_max!
*
* int factorial(int n) : O(ω(m) (log n + log m))
* n! mod m
* ω(m) : m
*
* int binomial(int n, int r) : O(ω(m) (log n + log m))
* nCr mod m
*/
struct Factorial_arbitrary_mod {
// verify : https://atcoder.jp/contests/arc012/tasks/arc012_4
// n_max!
int n_max;
// m
int np;
// ps[i], ds[i], pds[i] : m i
vi ps, ds; vl pds;
// fac[i][j] : [1..j] p[i] mod pd[i]
vvl fac;
// m
Factorial_arbitrary_mod(int m, int n) : n_max(n) {
// m
for (int p = 2; p * p <= m; p++) {
int d = 0, pd = 1;
while (m % p == 0) {
d++;
pd *= p;
m /= p;
}
if (d > 0) {
ps.push_back(p);
ds.push_back(d);
pds.push_back(pd);
}
}
if (m > 1) {
ps.push_back(m);
ds.push_back(1);
pds.push_back(m);
}
np = sz(ps);
// fac[i][j]
fac.resize(np);
rep(i, np) {
int len = (int)min(pds[i], (ll)n_max);
fac[i].resize(len + 1);
fac[i][0] = 1;
repi(j, 1, len) {
if (j % ps[i] == 0) fac[i][j] = fac[i][j - 1];
else fac[i][j] = (fac[i][j - 1] * j) % pds[i];
}
}
}
// m p = ps[i] ord_p(n!) pw[i]
// (n! / p^pw[i]) mod pds[i] rm[i]
void factorial_sub(int n_, vi& pw, vl& rm) const {
pw = vi(np, 0); rm = vl(np, 1);
rep(i, np) {
// pw = ord_p(n!)
int n = n_;
while (n > 0) {
int q = n / ps[i];
pw[i] += q;
n = q;
}
// rm
n = n_;
while (n > 0) {
int q = n / (int)pds[i], r = n % (int)pds[i];
rm[i] = (rm[i] * fac[i][r]) % pds[i];
if (q % 2 == 1) rm[i] = (rm[i] * fac[i][pds[i] - 1]) % pds[i];
n /= ps[i];
}
}
}
// n! mod m
int factorial(int n) const {
Assert(0 <= n && n <= n_max);
// n!
vi pw; vl rm;
factorial_sub(n, pw, rm);
//
vl rgt(np);
rep(i, np) {
if (pw[i] >= ds[i]) rgt[i] = 0;
else rgt[i] = rm[i] * pow(ps[i], (int)pw[i]);
}
//
return (int)crt(rgt, pds).first;
}
// nCr mod m
int binomial(int n, int r) const {
Assert(n <= n_max);
if (r < 0 || n - r < 0) return 0;
// n, r, n-r pow mod
vi pw_n, pw_r, pw_s; vl rm_n, rm_r, rm_s;
factorial_sub(n, pw_n, rm_n);
factorial_sub(r, pw_r, rm_r);
factorial_sub(n - r, pw_s, rm_s);
//
vl rgt(np);
rep(i, np) {
ll pw = pw_n[i] - pw_r[i] - pw_s[i];
ll rm = rm_n[i];
rm = (rm * inv_mod(rm_r[i], pds[i])) % pds[i];
rm = (rm * inv_mod(rm_s[i], pds[i])) % pds[i];
if (pw >= ds[i]) rgt[i] = 0;
else rgt[i] = rm * pow(ps[i], (int)pw);
}
//
return (int)crt(rgt, pds).first;
}
};
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int m, n;
cin >> m >> n;
Factorial_arbitrary_mod fm(100000000, m);
//repi(i, 0, m) {
// repi(j, 0, i) cout << fm.binomial(i, j) << " ";
// cout << endl;
//}
ll res = fm.binomial(m, n);
cout << setfill('0') << right << setw(8) << res << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0