結果
問題 | No.2119 一般化百五減算 |
ユーザー |
![]() |
提出日時 | 2022-11-04 22:21:57 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,535 bytes |
コンパイル時間 | 2,034 ms |
コンパイル使用メモリ | 196,472 KB |
最終ジャッジ日時 | 2025-02-08 17:59:25 |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 22 WA * 3 |
ソースコード
#include <bits/stdc++.h> using namespace std; // 負の数にも対応した mod // 例えば -17 を 5 で割った余りは本当は 3 (-17 ≡ 3 (mod. 5)) // しかし単に -17 % 5 では -2 になってしまう inline int64_t mod(int64_t a, int64_t m) { return (a % m + m) % m; } // 拡張 Euclid の互除法 // ap + bq = gcd(a, b) となる (p, q) を求め、d = gcd(a, b) をリターンします int64_t extGcd(int64_t a, int64_t b, int64_t& p, int64_t& q) { if (b == 0) { p = 1; q = 0; return a; } int64_t d = extGcd(b, a % b, q, p); q -= a / b * p; return d; } // 中国剰余定理 // リターン値を (r, m) とすると解は x ≡ r (mod. m) // 解なしの場合は (0, -1) をリターン pair<int64_t, int64_t> ChineseRem(const vector<int64_t>& b, const vector<int64_t>& m) { int64_t r = 0, M = 1; for (int i = 0; i < (int)b.size(); ++i) { int64_t p, q; int64_t d = extGcd(M, m[i], p, q); // p is inv of M/d (mod. m[i]/d) if ((b[i] - r) % d != 0) return make_pair(0, -1); int64_t tmp = (b[i] - r) / d * p % (m[i] / d); r += M * tmp; M *= m[i] / d; } return make_pair(mod(r, M), M); } int main() { int64_t N, M; cin >> N >> M; vector<int64_t> B(M), C(M); for (int64_t i = 0; i < M; i++) { cin >> B[i] >> C[i]; } const auto [r, m] = ChineseRem(C, B); if ((r == 0 && m == -1) || r > N) { cout << "NaN" << endl; return 0; } cout << r << endl; }