結果
問題 | No.2120 場合の数の下8桁 |
ユーザー | anqooqie |
提出日時 | 2022-11-05 14:15:01 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 153 ms / 2,000 ms |
コード長 | 32,586 bytes |
コンパイル時間 | 2,915 ms |
コンパイル使用メモリ | 235,076 KB |
実行使用メモリ | 9,344 KB |
最終ジャッジ日時 | 2024-07-19 07:41:51 |
合計ジャッジ時間 | 7,062 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 152 ms
9,344 KB |
testcase_01 | AC | 153 ms
9,344 KB |
testcase_02 | AC | 152 ms
9,344 KB |
testcase_03 | AC | 152 ms
9,216 KB |
testcase_04 | AC | 151 ms
9,344 KB |
testcase_05 | AC | 152 ms
9,216 KB |
testcase_06 | AC | 152 ms
9,344 KB |
testcase_07 | AC | 152 ms
9,216 KB |
testcase_08 | AC | 152 ms
9,344 KB |
testcase_09 | AC | 152 ms
9,344 KB |
testcase_10 | AC | 152 ms
9,216 KB |
testcase_11 | AC | 152 ms
9,344 KB |
testcase_12 | AC | 153 ms
9,216 KB |
testcase_13 | AC | 151 ms
9,216 KB |
testcase_14 | AC | 152 ms
9,344 KB |
testcase_15 | AC | 151 ms
9,344 KB |
testcase_16 | AC | 152 ms
9,216 KB |
testcase_17 | AC | 151 ms
9,216 KB |
testcase_18 | AC | 152 ms
9,216 KB |
testcase_19 | AC | 152 ms
9,344 KB |
ソースコード
#line 1 "main.cpp" #include <bits/stdc++.h> #line 1 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/modint.hpp" #line 6 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/modint.hpp" #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif #line 1 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/internal_math.hpp" #line 5 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/internal_math.hpp" #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #line 1 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/internal_type_traits.hpp" #line 7 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/internal_type_traits.hpp" namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #line 14 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/modint.hpp" namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #line 1 "/home/anqooqie/.proconlib/tools/extended_lucas.hpp" #line 1 "/home/anqooqie/.proconlib/tools/prime_factorization.hpp" #line 1 "/home/anqooqie/.proconlib/tools/is_prime.hpp" #line 1 "/home/anqooqie/.proconlib/tools/prod_mod.hpp" namespace tools { template <typename T1, typename T2, typename T3> constexpr T3 prod_mod(const T1 x, const T2 y, const T3 m) { using u128 = unsigned __int128; u128 prod_mod = u128(x >= 0 ? x : -x) * u128(y >= 0 ? y : -y) % u128(m); if ((x >= 0) ^ (y >= 0)) prod_mod = u128(m) - prod_mod; return prod_mod; } } #line 1 "/home/anqooqie/.proconlib/tools/pow_mod.hpp" #line 1 "/home/anqooqie/.proconlib/tools/mod.hpp" #line 1 "/home/anqooqie/.proconlib/tools/quo.hpp" #line 5 "/home/anqooqie/.proconlib/tools/quo.hpp" namespace tools { template <typename M, typename N> constexpr ::std::common_type_t<M, N> quo(const M lhs, const N rhs) { if (lhs >= 0) { return lhs / rhs; } else { if (rhs >= 0) { return -((-lhs - 1 + rhs) / rhs); } else { return (-lhs - 1 + -rhs) / -rhs; } } } } #line 6 "/home/anqooqie/.proconlib/tools/mod.hpp" namespace tools { template <typename M, typename N> constexpr ::std::common_type_t<M, N> mod(const M lhs, const N rhs) { if constexpr (::std::is_unsigned_v<M> && ::std::is_unsigned_v<N>) { return lhs % rhs; } else { return lhs - ::tools::quo(lhs, rhs) * rhs; } } } #line 6 "/home/anqooqie/.proconlib/tools/pow_mod.hpp" namespace tools { template <typename T1, typename T2, typename T3> constexpr T3 pow_mod(const T1 x, T2 n, const T3 m) { if (m == 1) return 0; T3 r = 1; T3 y = ::tools::mod(x, m); while (n > 0) { if ((n & 1) > 0) { r = ::tools::prod_mod(r, y, m); } y = ::tools::prod_mod(y, y, m); n /= 2; } return r; } } #line 7 "/home/anqooqie/.proconlib/tools/is_prime.hpp" namespace tools { constexpr bool is_prime(const ::std::uint_fast64_t n) { constexpr ::std::array<unsigned long long, 7> bases = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; if (n <= 1) return false; if (n == 2) return true; if (n % 2 == 0) return false; auto d = n - 1; for (; d % 2 == 0; d /= 2); for (const auto a : bases) { if (a % n == 0) return true; auto power = d; auto target = ::tools::pow_mod(a, power, n); bool is_composite = true; if (target == 1) is_composite = false; for (; is_composite && power != n - 1; power *= 2, target = ::tools::prod_mod(target, target, n)) { if (target == n - 1) is_composite = false; } if (is_composite) { return false; } } return true; } } #line 1 "/home/anqooqie/.proconlib/tools/pow2.hpp" #line 6 "/home/anqooqie/.proconlib/tools/pow2.hpp" namespace tools { template <typename T, typename ::std::enable_if<::std::is_unsigned<T>::value, ::std::nullptr_t>::type = nullptr> constexpr T pow2(const T x) { return static_cast<T>(1) << x; } template <typename T, typename ::std::enable_if<::std::is_signed<T>::value, ::std::nullptr_t>::type = nullptr> constexpr T pow2(const T x) { return static_cast<T>(static_cast<typename ::std::make_unsigned<T>::type>(1) << static_cast<typename ::std::make_unsigned<T>::type>(x)); } } #line 1 "/home/anqooqie/.proconlib/tools/floor_log2.hpp" #line 1 "/home/anqooqie/.proconlib/tools/popcount.hpp" #line 8 "/home/anqooqie/.proconlib/tools/popcount.hpp" namespace tools { template <typename T> T popcount(T x) { static_assert(::std::is_integral_v<T>); assert(x >= 0); if constexpr (::std::is_signed_v<T>) { return static_cast<T>(::tools::popcount<::std::make_unsigned_t<T>>(x)); } else { const auto log2 = [](const int w) { if (w == 8) return 3; if (w == 16) return 4; if (w == 32) return 5; if (w == 64) return 6; return -1; }; static_assert(log2(::std::numeric_limits<T>::digits) >= 0); if constexpr (::std::numeric_limits<T>::digits == 8) { x = (x & UINT8_C(0x55)) + (x >> 1 & UINT8_C(0x55)); x = (x & UINT8_C(0x33)) + (x >> 2 & UINT8_C(0x33)); x = (x & UINT8_C(0x0f)) + (x >> 4 & UINT8_C(0x0f)); } else if constexpr (::std::numeric_limits<T>::digits == 16) { x = (x & UINT16_C(0x5555)) + (x >> 1 & UINT16_C(0x5555)); x = (x & UINT16_C(0x3333)) + (x >> 2 & UINT16_C(0x3333)); x = (x & UINT16_C(0x0f0f)) + (x >> 4 & UINT16_C(0x0f0f)); x = (x & UINT16_C(0x00ff)) + (x >> 8 & UINT16_C(0x00ff)); } else if constexpr (::std::numeric_limits<T>::digits == 32) { x = (x & UINT32_C(0x55555555)) + (x >> 1 & UINT32_C(0x55555555)); x = (x & UINT32_C(0x33333333)) + (x >> 2 & UINT32_C(0x33333333)); x = (x & UINT32_C(0x0f0f0f0f)) + (x >> 4 & UINT32_C(0x0f0f0f0f)); x = (x & UINT32_C(0x00ff00ff)) + (x >> 8 & UINT32_C(0x00ff00ff)); x = (x & UINT32_C(0x0000ffff)) + (x >> 16 & UINT32_C(0x0000ffff)); } else if constexpr (::std::numeric_limits<T>::digits == 64) { x = (x & UINT64_C(0x5555555555555555)) + (x >> 1 & UINT64_C(0x5555555555555555)); x = (x & UINT64_C(0x3333333333333333)) + (x >> 2 & UINT64_C(0x3333333333333333)); x = (x & UINT64_C(0x0f0f0f0f0f0f0f0f)) + (x >> 4 & UINT64_C(0x0f0f0f0f0f0f0f0f)); x = (x & UINT64_C(0x00ff00ff00ff00ff)) + (x >> 8 & UINT64_C(0x00ff00ff00ff00ff)); x = (x & UINT64_C(0x0000ffff0000ffff)) + (x >> 16 & UINT64_C(0x0000ffff0000ffff)); x = (x & UINT64_C(0x00000000ffffffff)) + (x >> 32 & UINT64_C(0x00000000ffffffff)); } return x; } } } #line 8 "/home/anqooqie/.proconlib/tools/floor_log2.hpp" namespace tools { template <typename T> T floor_log2(T x) { static_assert(::std::is_integral_v<T>); assert(x > 0); if constexpr (::std::is_signed_v<T>) { return static_cast<T>(::tools::floor_log2<::std::make_unsigned_t<T>>(x)); } else { const auto log2 = [](const int w) { if (w == 8) return 3; if (w == 16) return 4; if (w == 32) return 5; if (w == 64) return 6; return -1; }; static_assert(log2(::std::numeric_limits<T>::digits) >= 0); x |= (x >> 1); x |= (x >> 2); x |= (x >> 4); if constexpr (::std::numeric_limits<T>::digits > 8) x |= (x >> 8); if constexpr (::std::numeric_limits<T>::digits > 16) x |= (x >> 16); if constexpr (::std::numeric_limits<T>::digits > 32) x |= (x >> 32); return ::tools::popcount(x) - static_cast<T>(1); } } } #line 15 "/home/anqooqie/.proconlib/tools/prime_factorization.hpp" namespace tools { template <typename T> ::std::vector<T> prime_factorization(T n) { assert(1 <= n && n <= 1000000000000000000); ::std::vector<T> result; if (n == 1) return result; ::std::queue<::std::pair<T, T>> factors({::std::pair<T, T>(n, 1)}); while (!factors.empty()) { const T factor = factors.front().first; const T occurrences = factors.front().second; factors.pop(); if (::tools::is_prime(factor)) { for (T i = 0; i < occurrences; ++i) { result.push_back(factor); } } else { const T m = ::tools::pow2((::tools::floor_log2(factor) + 1) / 8); for (T c = 1; ; ++c) { const auto f = [&](T& x) { x = ::tools::prod_mod(x, x, factor); x += c; if (x >= factor) x -= factor; }; T y = 2; T r = 1; T q = 1; T x, g, ys; do { x = y; for (T i = 0; i < r; ++i) { f(y); } T k = 0; do { ys = y; for (T i = 0; i < ::std::min(m, r - k); ++i) { f(y); q = ::tools::prod_mod(q, ::std::abs(x - y), factor); } g = ::std::gcd(q, factor); k += m; } while (k < r && g == 1); r *= 2; } while (g == 1); if (g == factor) { do { f(ys); g = ::std::gcd(::std::abs(x - ys), factor); } while (g == 1); } if (g < factor) { T h = factor / g; if (h < g) ::std::swap(g, h); T n = 1; while (h % g == 0) { h /= g; ++n; } factors.emplace(g, occurrences * n); if (h > 1) factors.emplace(h, occurrences); break; } } } } ::std::sort(result.begin(), result.end()); return result; } } #line 1 "/home/anqooqie/.proconlib/tools/run_length.hpp" #line 8 "/home/anqooqie/.proconlib/tools/run_length.hpp" namespace tools { template <typename InputIterator, typename OutputIterator> void run_length(const InputIterator& begin, const InputIterator& end, OutputIterator result) { using T = typename ::std::iterator_traits<InputIterator>::value_type; if (begin == end) return; ::std::pair<T, ::std::size_t> prev; for (auto [it, breaks] = ::std::make_pair(begin, false); !breaks; breaks = it == end, it = ::std::next(it, breaks ? 0 : 1)) { bool flg1, flg2; if (it == begin) { flg1 = false; flg2 = true; } else if (it == end) { flg1 = true; flg2 = false; } else if (*it != prev.first) { flg1 = true; flg2 = true; } else { flg1 = false; flg2 = false; } if (flg1 || flg2) { if (flg1) { *result = prev; ++result; } if (flg2) { prev.first = *it; prev.second = 1; } } else { ++prev.second; } } } } #line 1 "/home/anqooqie/.proconlib/tools/garner.hpp" #line 1 "/home/anqooqie/.proconlib/tools/inv_mod.hpp" #line 1 "/home/anqooqie/.proconlib/tools/extgcd.hpp" #line 7 "/home/anqooqie/.proconlib/tools/extgcd.hpp" namespace tools { template <typename T> ::std::tuple<T, T, T> extgcd(T prev_r, T r) { T prev_s(1); T prev_t(0); T s(0); T t(1); while (r != 0) { const T q = ::tools::quo(prev_r, r); ::std::tie(prev_r, r) = ::std::make_pair(r, prev_r - q * r); ::std::tie(prev_s, s) = ::std::make_pair(s, prev_s - q * s); ::std::tie(prev_t, t) = ::std::make_pair(t, prev_t - q * t); } if (prev_r < T(0)) prev_r = -prev_r; return ::std::make_tuple(prev_s, prev_t, prev_r); } } #line 7 "/home/anqooqie/.proconlib/tools/inv_mod.hpp" namespace tools { template <typename T1, typename T2> constexpr T2 inv_mod(const T1 x, const T2 m) { const auto [x0, y0, gcd] = ::tools::extgcd(x, m); assert(gcd == 1); return ::tools::mod(x0, m); } } #line 9 "/home/anqooqie/.proconlib/tools/garner.hpp" // Source: https://qiita.com/drken/items/ae02240cd1f8edfc86fd // License: unknown // Author: drken namespace tools { template <typename Iterator, typename ModType> ::std::pair<long long, long long> garner(const Iterator& begin, const Iterator& end, const ModType& mod) { ::std::vector<long long> b, m; for (auto it = begin; it != end; ++it) { b.push_back(::tools::mod(it->first, it->second)); m.push_back(it->second); } auto lcm = 1LL; for (::std::size_t i = 0; i < b.size(); ++i) { (lcm *= m[i]) %= mod; } m.push_back(mod); ::std::vector<long long> coeffs(m.size(), 1); ::std::vector<long long> constants(m.size(), 0); for (::std::size_t k = 0; k < b.size(); ++k) { long long t = ::tools::mod((b[k] - constants[k]) * ::tools::inv_mod(coeffs[k], m[k]), m[k]); for (::std::size_t i = k + 1; i < m.size(); ++i) { (constants[i] += t * coeffs[i]) %= m[i]; (coeffs[i] *= m[k]) %= m[i]; } } return ::std::make_pair(constants.back(), lcm); } template <typename M, typename Iterator> ::std::pair<M, M> garner(const Iterator& begin, const Iterator& end) { const auto [y, z] = ::tools::garner(begin, end, M::mod()); return ::std::make_pair(M::raw(y), M::raw(z)); } } #line 11 "/home/anqooqie/.proconlib/tools/extended_lucas.hpp" namespace tools { // Source: https://w.atwiki.jp/uwicoder/pages/2118.html#id_6779f709 // License: unknown // Author: uwi template <class M> class extended_lucas { private: class prime_power { private: ::std::vector<long long> fact; ::std::vector<long long> ifact; public: long long p; long long q; long long P; prime_power(const long long p, const long long q) : p(p), q(q) { this->P = 1; for (long long i = 0; i < q; ++i) { this->P *= p; } this->fact.resize(this->P + 1); this->ifact.resize(this->P + 1); this->fact[0] = 1 % this->P; for (long long i = 1; i <= this->P; ++i) { this->fact[i] = this->fact[i - 1] * (i % p == 0 ? 1 : i) % this->P; } for (long long i = 0; i <= this->P; ++i) { long long ret = 1 % this->P; long long mul = this->fact[i]; for (long long n = this->P / p * (p - 1) - 1; n > 0; n /= 2) { if ((n & 1) == 1) { ret = (ret * mul) % P; } mul = (mul * mul) % P; } this->ifact[i] = ret; } } long long combination(long long n, long long r) const { assert(0 <= r && r <= n); long long z = n - r; long long e0 = 0; for (long long u = n / this->p; u > 0; u /= this->p) e0 += u; for (long long u = r / this->p; u > 0; u /= this->p) e0 -= u; for (long long u = z / this->p; u > 0; u /= this->p) e0 -= u; long long em = 0; for (long long u = n / this->P; u > 0; u /= this->p) em += u; for (long long u = r / this->P; u > 0; u /= this->p) em -= u; for (long long u = z / this->P; u > 0; u /= this->p) em -= u; long long ret = 1 % this->P; while (n > 0) { ret = ret * this->fact[n % this->P] % this->P * this->ifact[r % this->P] % this->P * this->ifact[z % this->P] % this->P; n /= this->p; r /= this->p; z /= this->p; } for (long long i = 0; i < e0; ++i) { ret = ret * this->p % this->P; } if (!(this->p == 2 && this->q >= 3) && (em & 1) == 1) { ret = (this->P - ret) % this->P; } return ret; } }; ::std::vector<::tools::extended_lucas<M>::prime_power> prime_powers; public: extended_lucas() { const auto prime_factors = ::tools::prime_factorization(M::mod()); ::std::vector<::std::pair<long long, long long>> distinct_prime_factors; ::tools::run_length(prime_factors.begin(), prime_factors.end(), ::std::back_inserter(distinct_prime_factors)); for (const auto& [p, q] : distinct_prime_factors) { this->prime_powers.emplace_back(p, q); } } extended_lucas(const ::tools::extended_lucas<M>&) = default; extended_lucas(::tools::extended_lucas<M>&&) = default; ~extended_lucas() = default; ::tools::extended_lucas<M>& operator=(const ::tools::extended_lucas<M>&) = default; ::tools::extended_lucas<M>& operator=(::tools::extended_lucas<M>&&) = default; M combination(const long long n, const long long r) const { if (n < 0 || r < 0 || r > n) return M::raw(0); ::std::vector<std::pair<long long, long long>> answers; answers.reserve(this->prime_powers.size()); for (const auto& prime_power : this->prime_powers) { answers.emplace_back(prime_power.combination(n, r), prime_power.P); } return ::tools::garner<M>(answers.begin(), answers.end()).first; } }; } #line 4 "main.cpp" using ll = long long; using mint = atcoder::static_modint<100000000>; tools::extended_lucas<mint> cache; int main() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); ll M, N; std::cin >> M >> N; std::cout << std::setw(8) << std::setfill('0') << cache.combination(M, N).val() << '\n'; return 0; }