結果
問題 | No.2120 場合の数の下8桁 |
ユーザー | shobonvip |
提出日時 | 2022-11-08 18:20:38 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 282 ms / 2,000 ms |
コード長 | 1,633 bytes |
コンパイル時間 | 154 ms |
コンパイル使用メモリ | 82,460 KB |
実行使用メモリ | 78,464 KB |
最終ジャッジ日時 | 2024-07-22 02:28:49 |
合計ジャッジ時間 | 3,492 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 64 ms
67,072 KB |
testcase_01 | AC | 63 ms
66,944 KB |
testcase_02 | AC | 65 ms
67,584 KB |
testcase_03 | AC | 68 ms
67,328 KB |
testcase_04 | AC | 63 ms
67,328 KB |
testcase_05 | AC | 65 ms
67,072 KB |
testcase_06 | AC | 224 ms
71,680 KB |
testcase_07 | AC | 66 ms
67,200 KB |
testcase_08 | AC | 66 ms
67,456 KB |
testcase_09 | AC | 77 ms
71,680 KB |
testcase_10 | AC | 148 ms
71,968 KB |
testcase_11 | AC | 224 ms
72,192 KB |
testcase_12 | AC | 75 ms
70,528 KB |
testcase_13 | AC | 109 ms
78,064 KB |
testcase_14 | AC | 112 ms
78,016 KB |
testcase_15 | AC | 187 ms
78,080 KB |
testcase_16 | AC | 252 ms
78,464 KB |
testcase_17 | AC | 254 ms
77,952 KB |
testcase_18 | AC | 65 ms
67,328 KB |
testcase_19 | AC | 282 ms
78,464 KB |
ソースコード
import typing def inv_gcd(a: int, b: int) -> typing.Tuple[int, int]: a %= b if a == 0: return (b, 0) s = b t = a m0 = 0 m1 = 1 while t: u = s // t s -= t * u m0 -= m1 * u s, t = t, s m0, m1 = m1, m0 if m0 < 0: m0 += b // s return (s, m0) def inv_mod(x: int, m: int) -> int: z = inv_gcd(x, m) return z[1] def crt(r: typing.List[int], m: typing.List[int]) -> typing.Tuple[int, int]: r0 = 0 m0 = 1 for r1, m1 in zip(r, m): r1 %= m1 if m0 < m1: r0, r1 = r1, r0 m0, m1 = m1, m0 if m0 % m1 == 0: if r0 % m1 != r1: return (0, 0) continue g, im = inv_gcd(m0, m1) u1 = m1 // g if (r1 - r0) % g: return (0, 0) x = (r1 - r0) // g % u1 * im % u1 r0 += x * m0 m0 *= u1 if r0 < 0:r0 += m0 return (r0, m0) def legendre(n, p): ret = 0 while n > 0: n //= p ret += n return ret # 2^a1 * [a2 (mod 2^8)] # 5^b1 * [b2 (mod 5^8)] # で CRT m = int(input()) n = int(input()) if m < n: print("00000000") exit() m1 = 2 ** 8 m2 = 5 ** 8 a1 = legendre(m, 2) - legendre(n, 2) - legendre(m-n, 2) a2 = legendre(m, 5) - legendre(n, 5) - legendre(m-n, 5) b1m = 1 b1n = 1 b1mn = 1 for i in range(1, m+1): r = i while i % 2 == 0: i //= 2 b1m *= i b1m %= m1 if r == n: b1n = b1m if r == m-n: b1mn = b1m b2m = 1 b2n = 1 b2mn = 1 for i in range(1, m+1): r = i while i % 5 == 0: i //= 5 b2m *= i b2m %= m2 if r == n: b2n = b2m if r == m-n: b2mn = b2m b1 = b1m * inv_mod(b1n * b1mn % m1, m1) % m1 b2 = b2m * inv_mod(b2n * b2mn % m2, m2) % m2 r1 = b1 * pow(2, a1, m1) % m1 r2 = b2 * pow(5, a2, m2) % m2 ans = crt([r1,r2],[m1,m2])[0] print(str(ans).zfill(8))