結果
問題 | No.2129 Perfect Binary Tree...? |
ユーザー | 👑 hos.lyric |
提出日時 | 2022-11-18 21:40:52 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 10,637 bytes |
コンパイル時間 | 1,067 ms |
コンパイル使用メモリ | 111,904 KB |
実行使用メモリ | 18,248 KB |
最終ジャッジ日時 | 2024-09-20 02:04:40 |
合計ジャッジ時間 | 3,475 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 5 ms
6,940 KB |
testcase_04 | AC | 4 ms
6,944 KB |
testcase_05 | AC | 1 ms
6,944 KB |
testcase_06 | AC | 15 ms
6,944 KB |
testcase_07 | AC | 10 ms
6,944 KB |
testcase_08 | AC | 45 ms
11,272 KB |
testcase_09 | AC | 46 ms
11,620 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | AC | 89 ms
18,248 KB |
testcase_14 | AC | 48 ms
11,808 KB |
testcase_15 | AC | 45 ms
11,028 KB |
testcase_16 | AC | 86 ms
16,528 KB |
testcase_17 | AC | 4 ms
6,940 KB |
testcase_18 | AC | 4 ms
6,944 KB |
testcase_19 | AC | 4 ms
6,944 KB |
testcase_20 | AC | 6 ms
6,940 KB |
testcase_21 | AC | 5 ms
6,944 KB |
testcase_22 | AC | 5 ms
6,944 KB |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | AC | 26 ms
8,400 KB |
testcase_26 | AC | 5 ms
6,944 KB |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | AC | 91 ms
17,992 KB |
testcase_31 | WA | - |
ソースコード
#include <cassert> #include <cmath> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <functional> #include <iostream> #include <map> #include <numeric> #include <queue> #include <set> #include <sstream> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using Int = long long; template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; } template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } //////////////////////////////////////////////////////////////////////////////// template <unsigned M_> struct ModInt { static constexpr unsigned M = M_; unsigned x; constexpr ModInt() : x(0U) {} constexpr ModInt(unsigned x_) : x(x_ % M) {} constexpr ModInt(unsigned long long x_) : x(x_ % M) {} constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {} constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {} ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; } ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; } ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; } ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); } ModInt pow(long long e) const { if (e < 0) return inv().pow(-e); ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b; } ModInt inv() const { unsigned a = M, b = x; int y = 0, z = 1; for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; } assert(a == 1U); return ModInt(y); } ModInt operator+() const { return *this; } ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; } ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); } ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); } ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); } ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); } template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); } template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); } template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); } template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); } explicit operator bool() const { return x; } bool operator==(const ModInt &a) const { return (x == a.x); } bool operator!=(const ModInt &a) const { return (x != a.x); } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; } }; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// constexpr unsigned MO = 998244353U; constexpr unsigned MO2 = 2U * MO; constexpr int FFT_MAX = 23; using Mint = ModInt<MO>; constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U}; constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U}; constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U}; constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U}; // as[rev(i)] <- \sum_j \zeta^(ij) as[j] void fft(Mint *as, int n) { assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX); int m = n; if (m >>= 1) { for (int i = 0; i < m; ++i) { const unsigned x = as[i + m].x; // < MO as[i + m].x = as[i].x + MO - x; // < 2 MO as[i].x += x; // < 2 MO } } if (m >>= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned x = (prod * as[i + m]).x; // < MO as[i + m].x = as[i].x + MO - x; // < 3 MO as[i].x += x; // < 3 MO } prod *= FFT_RATIOS[__builtin_ctz(++h)]; } } for (; m; ) { if (m >>= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned x = (prod * as[i + m]).x; // < MO as[i + m].x = as[i].x + MO - x; // < 4 MO as[i].x += x; // < 4 MO } prod *= FFT_RATIOS[__builtin_ctz(++h)]; } } if (m >>= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned x = (prod * as[i + m]).x; // < MO as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO as[i + m].x = as[i].x + MO - x; // < 3 MO as[i].x += x; // < 3 MO } prod *= FFT_RATIOS[__builtin_ctz(++h)]; } } } for (int i = 0; i < n; ++i) { as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x; // < MO } } // as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)] void invFft(Mint *as, int n) { assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX); int m = 1; if (m < n >> 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MO as[i].x += as[i + m].x; // < 2 MO as[i + m].x = (prod.x * y) % MO; // < MO } prod *= INV_FFT_RATIOS[__builtin_ctz(++h)]; } m <<= 1; } for (; m < n >> 1; m <<= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + (m >> 1); ++i) { const unsigned long long y = as[i].x + MO2 - as[i + m].x; // < 4 MO as[i].x += as[i + m].x; // < 4 MO as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO as[i + m].x = (prod.x * y) % MO; // < MO } for (int i = i0 + (m >> 1); i < i0 + m; ++i) { const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MO as[i].x += as[i + m].x; // < 2 MO as[i + m].x = (prod.x * y) % MO; // < MO } prod *= INV_FFT_RATIOS[__builtin_ctz(++h)]; } } if (m < n) { for (int i = 0; i < m; ++i) { const unsigned y = as[i].x + MO2 - as[i + m].x; // < 4 MO as[i].x += as[i + m].x; // < 4 MO as[i + m].x = y; // < 4 MO } } const Mint invN = Mint(n).inv(); for (int i = 0; i < n; ++i) { as[i] *= invN; } } void fft(vector<Mint> &as) { fft(as.data(), as.size()); } void invFft(vector<Mint> &as) { invFft(as.data(), as.size()); } vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) { if (as.empty() || bs.empty()) return {}; const int len = as.size() + bs.size() - 1; int n = 1; for (; n < len; n <<= 1) {} as.resize(n); fft(as); bs.resize(n); fft(bs); for (int i = 0; i < n; ++i) as[i] *= bs[i]; invFft(as); as.resize(len); return as; } vector<Mint> square(vector<Mint> as) { if (as.empty()) return {}; const int len = as.size() + as.size() - 1; int n = 1; for (; n < len; n <<= 1) {} as.resize(n); fft(as); for (int i = 0; i < n; ++i) as[i] *= as[i]; invFft(as); as.resize(len); return as; } //////////////////////////////////////////////////////////////////////////////// int N; int A, B, C; char U[200'010], V[200'010]; int main() { for (; ~scanf("%d", &N); ) { scanf("%s", U); scanf("%s", V); A = strlen(U); B = strlen(V); --A; --B; for (C = 0; C < A && C < B && U[1 + C] == V[1 + C]; ++C) {} // cerr<<"A = "<<A<<", B = "<<B<<", C = "<<C<<endl; const Mint inv2 = Mint(2).inv(); vector<Mint> two(N + 1), invTwo(N + 1); two[0] = invTwo[0] = 1; for (int i = 1; i <= N; ++i) { two[i] = two[i - 1] * 2; invTwo[i] = invTwo[i - 1] * inv2; } Mint ans = 0; for (int i = 0; i < N; ++i) { ans += two[i] * (two[N - i] - 1) * (two[N] - two[N - i]); } // cerr<<"ans = "<<ans<<endl; vector<Mint> fs((A - C) + (B - C) + 1); for (int i = C + 1; i <= A; ++i) { fs[A - i] = (i == A) ? (two[N - i] - 1) : two[N - i - 1]; } for (int i = C + 1; i <= B; ++i) { fs[(A - C) + (i - C)] = (i == B) ? (two[N - i] - 1) : two[N - i - 1]; } if (A == C && B == C) { fs[A - C] = two[N - C] - 1; } else if (A == C || B == C) { fs[A - C] = two[N - C - 1]; } fs[A - C] += (two[N] - two[N - C]); auto gs = fs; reverse(gs.begin(), gs.end()); const auto prod = convolve(fs, gs); // cerr<<"fs = "<<fs<<endl; // cerr<<"prod = "<<prod<<endl; for (int k = 0; k < (int)prod.size(); ++k) { if (1 + k < (A - C) + (B - C) - k) { ans -= prod[k] * (((A - C) + (B - C) - k) - (1 + k)); } } printf("%u\n", ans.x); } return 0; }