結果
| 問題 |
No.2134 $\sigma$-algebra over Finite Set
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2022-11-25 22:26:35 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,256 bytes |
| コンパイル時間 | 1,881 ms |
| コンパイル使用メモリ | 198,708 KB |
| 最終ジャッジ日時 | 2025-02-09 00:28:21 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 9 WA * 8 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <int M>
struct MInt {
unsigned int v;
MInt() : v(0) {}
MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr int get_mod() { return M; }
static void set_mod(const int divisor) { assert(divisor == M); }
static void init(const int x = 10000000) {
inv(x, true);
fact(x);
fact_inv(x);
}
static MInt inv(const int n, const bool init = false) {
// assert(0 <= n && n < M && std::__gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) {
return inverse[n];
} else if (init) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * (M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
const int prev = factorial.size();
if (n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
const int prev = f_inv.size();
if (n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
inv(k, true);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
MInt& operator+=(const MInt& x) {
if ((v += x.v) >= M) v -= M;
return *this;
}
MInt& operator-=(const MInt& x) {
if ((v += M - x.v) >= M) v -= M;
return *this;
}
MInt& operator*=(const MInt& x) {
v = static_cast<unsigned long long>(v) * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
bool operator==(const MInt& x) const { return v == x.v; }
bool operator!=(const MInt& x) const { return v != x.v; }
bool operator<(const MInt& x) const { return v < x.v; }
bool operator<=(const MInt& x) const { return v <= x.v; }
bool operator>(const MInt& x) const { return v > x.v; }
bool operator>=(const MInt& x) const { return v >= x.v; }
MInt& operator++() {
if (++v == M) v = 0;
return *this;
}
MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
MInt operator+() const { return *this; }
MInt operator-() const { return MInt(v ? M - v : 0); }
MInt operator+(const MInt& x) const { return MInt(*this) += x; }
MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
template <int N>
struct BinaryMatrix {
explicit BinaryMatrix(const int m, const int n = N, const bool def = false)
: n(n), data(m, std::bitset<N>(std::string(n, def ? '1' : '0'))) {}
int nrow() const { return data.size(); }
int ncol() const { return n; }
BinaryMatrix pow(long long exponent) const {
BinaryMatrix res(n, n), tmp = *this;
for (int i = 0; i < n; ++i) {
res[i].set(i);
}
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
inline const std::bitset<N>& operator[](const int i) const { return data[i]; }
inline std::bitset<N>& operator[](const int i) { return data[i]; }
BinaryMatrix& operator=(const BinaryMatrix& x) = default;
BinaryMatrix& operator+=(const BinaryMatrix& x) {
const int m = nrow();
for (int i = 0; i < m; ++i) {
data[i] ^= x[i];
}
return *this;
}
BinaryMatrix& operator*=(const BinaryMatrix& x) {
const int m = nrow(), l = x.ncol();
BinaryMatrix t_x(l, n), res(m, l);
for (int i = 0; i < l; ++i) {
for (int j = 0; j < n; ++j) {
t_x[i][j] = x[j][i];
}
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < l; ++j) {
if ((data[i] & t_x[j]).count() & 1) res[i].set(j);
}
}
return *this = res;
}
BinaryMatrix operator+(const BinaryMatrix& x) const {
return BinaryMatrix(*this) += x;
}
BinaryMatrix operator*(const BinaryMatrix& x) const {
return BinaryMatrix(*this) *= x;
}
private:
int n;
std::vector<std::bitset<N>> data;
};
template <int N>
int gauss_jordan(BinaryMatrix<N>* a, const bool is_extended = false) {
const int m = a->nrow(), n = a->ncol();
int rank = 0;
for (int col = 0; col < (is_extended ? n - 1 : n); ++col) {
int pivot = -1;
for (int row = rank; row < m; ++row) {
if ((*a)[row][col]) {
pivot = row;
break;
}
}
if (pivot == -1) continue;
std::swap((*a)[rank], (*a)[pivot]);
for (int row = 0; row < m; ++row) {
if (row != rank && (*a)[row][col]) (*a)[row] ^= (*a)[rank];
}
++rank;
}
return rank;
}
int main() {
constexpr int N = 1000;
int n, m; cin >> n >> m;
BinaryMatrix<N> matrix(m * 2 + 1, n);
REP(i, m) {
REP(j, n) matrix[i * 2 + 1].flip(j);
int l; cin >> l;
while (l--) {
int a; cin >> a; --a;
matrix[i * 2].flip(a);
matrix[i * 2 + 1].flip(a);
}
}
REP(j, n) matrix[m * 2].flip(j);
cout << ModInt(2).pow(gauss_jordan(&matrix)) << '\n';
return 0;
// // unordered_set<bitset<N>> p_x{0, bitset<N>((1 << N) - 1)}, que{"10000", "11000"}; // これはバグる
// unordered_set<bitset<N>> p_x{0, bitset<N>((1 << N) - 1)}, que;
// while (!que.empty()) {
// const bitset<N> cur = *que.begin();
// que.erase(que.begin());
// bitset<N> pr = cur;
// pr.flip();
// if (!p_x.count(pr) && !que.count(pr)) que.emplace(pr);
// for (const bitset<N> x : p_x) {
// const bitset<N> nxt = cur | x;
// if (nxt != cur && !p_x.count(nxt) && !que.count(nxt)) que.emplace(nxt);
// }
// p_x.emplace(cur);
// }
// cout << p_x.size() << '\n';
// for (const auto x : p_x) cout << x << '\n';
}
emthrm