結果
| 問題 |
No.2125 Inverse Sum
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2022-11-25 23:38:32 |
| 言語 | Lua (LuaJit 2.1.1734355927) |
| 結果 |
AC
|
| 実行時間 | 290 ms / 2,000 ms |
| コード長 | 2,437 bytes |
| コンパイル時間 | 467 ms |
| コンパイル使用メモリ | 7,076 KB |
| 実行使用メモリ | 22,096 KB |
| 最終ジャッジ日時 | 2024-10-02 06:07:45 |
| 合計ジャッジ時間 | 2,927 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 30 |
ソースコード
local mce, mfl, msq, mmi, mma, mab = math.ceil, math.floor, math.sqrt, math.min, math.max, math.abs
local function getgcd(x, y)
while 0 < x do
x, y = y % x, x
end
return y
end
local function getprimes(x)
local primes = {}
local allnums = {}
for i = 1, x do allnums[i] = true end
for i = 2, x do
if allnums[i] then
table.insert(primes, i)
local lim = mfl(x / i)
for j = 2, lim do
allnums[j * i] = false
end
end
end
return primes
end
local function getdivisorparts(x, primes)
local prime_num = #primes
local tmp = {}
local lim = mce(msq(x))
local primepos = 1
local dv = primes[primepos]
while primepos <= prime_num and dv <= lim do
if x % dv == 0 then
local t = {}
t.p = dv
t.cnt = 2
x = mfl(x / dv)
while x % dv == 0 do
x = mfl(x / dv)
t.cnt = t.cnt + 2
end
table.insert(tmp, t)
lim = mce(msq(x))
end
if primepos == prime_num then break end
primepos = primepos + 1
dv = primes[primepos]
end
if x ~= 1 then
local t = {}
t.p, t.cnt = x, 2
table.insert(tmp, t)
end
return tmp
end
local function getdivisorCore(divisorparts)
local t = {}
local pat = 1
local len = #divisorparts
local allpat = 1
for i = 1, len do
allpat = allpat * (1 + divisorparts[i].cnt)
end
for t_i_pat = 0, allpat - 1 do
local div = allpat
local i_pat = t_i_pat
local ret = 1LL
for i = 1, len do
div = mfl(div / (divisorparts[i].cnt + 1))
local mul = mfl(i_pat / div)
i_pat = i_pat % div
for j = 1, mul do
ret = ret * divisorparts[i].p
end
end
table.insert(t, ret)
end
table.sort(t)
return t
end
local function getdivisor(x, primes)
local dvp = getdivisorparts(x, primes)
return getdivisorCore(dvp)
end
local p, q = io.read("*n", "*n")
local gcd = getgcd(p, q)
p = mfl(p / gcd)
q = mfl(q / gcd)
local primes = getprimes(32000)
local dv = getdivisor(q, primes)
local pl = 1LL * p
local ans = {}
for i = 1, #dv do
local x = dv[i] + q
local y = (1LL * q * q) / dv[i] + q
if 0LL < x and 0LL < y and x % pl == 0LL and y % pl == 0LL then
table.insert(ans, {x / pl, y / pl})
end
end
table.sort(ans, function(x, y) return x[1] < y[1] end)
print(#ans)
for i = 1, #ans do
local x = tostring(ans[i][1]):gsub("LL", "")
local y = tostring(ans[i][2]):gsub("LL", "")
print(x .. " " .. y)
end