結果

問題 No.2136 Dice Calendar?
ユーザー tokusakuraitokusakurai
提出日時 2022-11-26 10:18:06
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2,863 ms / 5,000 ms
コード長 13,379 bytes
コンパイル時間 2,096 ms
コンパイル使用メモリ 212,856 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-10-02 14:11:50
合計ジャッジ時間 18,755 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 20 ms
6,820 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 1 ms
6,816 KB
testcase_05 AC 3 ms
6,820 KB
testcase_06 AC 3 ms
6,816 KB
testcase_07 AC 4 ms
6,820 KB
testcase_08 AC 8 ms
6,816 KB
testcase_09 AC 13 ms
6,820 KB
testcase_10 AC 22 ms
6,820 KB
testcase_11 AC 47 ms
6,820 KB
testcase_12 AC 77 ms
6,824 KB
testcase_13 AC 51 ms
6,820 KB
testcase_14 AC 104 ms
6,820 KB
testcase_15 AC 340 ms
6,816 KB
testcase_16 AC 499 ms
6,820 KB
testcase_17 AC 283 ms
6,820 KB
testcase_18 AC 1,135 ms
6,816 KB
testcase_19 AC 1,153 ms
6,820 KB
testcase_20 AC 1,728 ms
6,816 KB
testcase_21 AC 1,755 ms
6,816 KB
testcase_22 AC 2,651 ms
6,824 KB
testcase_23 AC 2,863 ms
6,820 KB
testcase_24 AC 81 ms
6,816 KB
testcase_25 AC 114 ms
6,816 KB
testcase_26 AC 2,678 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
using maxheap = priority_queue<T>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;

template <int mod>
struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int &operator+=(const Mod_Int &p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator-=(const Mod_Int &p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator*=(const Mod_Int &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int &operator/=(const Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int &p) const { return x == p.x; }

    bool operator!=(const Mod_Int &p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }

    friend istream &operator>>(istream &is, Mod_Int &p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

using mint = Mod_Int<MOD>;

template <typename T>
struct Combination {
    static vector<T> _fac, _ifac;

    Combination() {}

    static void init(int n) {
        _fac.resize(n + 1), _ifac.resize(n + 1);
        _fac[0] = 1;
        for (int i = 1; i <= n; i++) _fac[i] = _fac[i - 1] * i;
        _ifac[n] = _fac[n].inverse();
        for (int i = n; i >= 1; i--) _ifac[i - 1] = _ifac[i] * i;
    }

    static T fac(int k) { return _fac[k]; }

    static T ifac(int k) { return _ifac[k]; }

    static T inv(int k) { return fac(k - 1) * ifac(k); }

    static T P(int n, int k) {
        if (k < 0 || n < k) return 0;
        return fac(n) * ifac(n - k);
    }

    static T C(int n, int k) {
        if (k < 0 || n < k) return 0;
        return fac(n) * ifac(n - k) * ifac(k);
    }

    // k 個の区別できない玉を n 個の区別できる箱に入れる場合の数
    static T H(int n, int k) {
        if (n < 0 || k < 0) return 0;
        return k == 0 ? 1 : C(n + k - 1, k);
    }

    // n 個の区別できる玉を、k 個の区別しない箱に、各箱に 1 個以上玉が入るように入れる場合の数
    static T second_stirling_number(int n, int k) {
        T ret = 0;
        for (int i = 0; i <= k; i++) {
            T tmp = C(k, i) * T(i).pow(n);
            ret += ((k - i) & 1) ? -tmp : tmp;
        }
        return ret * ifac(k);
    }

    // n 個の区別できる玉を、k 個の区別しない箱に入れる場合の数
    static T bell_number(int n, int k) {
        if (n == 0) return 1;
        k = min(k, n);
        vector<T> pref(k + 1);
        pref[0] = 1;
        for (int i = 1; i <= k; i++) {
            if (i & 1) {
                pref[i] = pref[i - 1] - ifac(i);
            } else {
                pref[i] = pref[i - 1] + ifac(i);
            }
        }
        T ret = 0;
        for (int i = 1; i <= k; i++) ret += T(i).pow(n) * ifac(i) * pref[k - i];
        return ret;
    }
};

template <typename T>
vector<T> Combination<T>::_fac = vector<T>();

template <typename T>
vector<T> Combination<T>::_ifac = vector<T>();

using comb = Combination<mint>;

template <typename F> // 流量の型
struct Dinic {
    struct edge {
        int to;
        F cap;
        int rev;
        edge(int to, F cap, int rev) : to(to), cap(cap), rev(rev) {}
    };

    vector<vector<edge>> es;
    vector<int> d, pos;
    const F zero_F, INF_F;
    const int n;

    Dinic(int n, F zero_F = 0, F INF_F = numeric_limits<F>::max() / 2) : es(n), d(n), pos(n), zero_F(zero_F), INF_F(INF_F), n(n) {}

    void add_edge(int from, int to, F cap, bool directed = true) {
        es[from].emplace_back(to, cap, (int)es[to].size());
        es[to].emplace_back(from, directed ? zero_F : cap, (int)es[from].size() - 1);
    }

    bool _bfs(int s, int t) {
        fill(begin(d), end(d), -1);
        queue<int> que;
        d[s] = 0;
        que.push(s);
        while (!que.empty()) {
            int i = que.front();
            que.pop();
            for (auto &e : es[i]) {
                if (e.cap > zero_F && d[e.to] == -1) {
                    d[e.to] = d[i] + 1;
                    que.push(e.to);
                }
            }
        }
        return d[t] != -1;
    }

    F _dfs(int now, int t, F flow) {
        if (now == t) return flow;
        for (int &i = pos[now]; i < (int)es[now].size(); i++) {
            edge &e = es[now][i];
            if (e.cap > zero_F && d[e.to] > d[now]) {
                F f = _dfs(e.to, t, min(flow, e.cap));
                if (f > zero_F) {
                    e.cap -= f;
                    es[e.to][e.rev].cap += f;
                    return f;
                }
            }
        }
        return zero_F;
    }

    F max_flow(int s, int t) { // 操作後の d 配列は最小カットの 1 つを表す(0 以上なら s 側、-1 なら t 側)
        F flow = zero_F;
        while (_bfs(s, t)) {
            fill(begin(pos), end(pos), 0);
            F f = zero_F;
            while ((f = _dfs(s, t, INF_F)) > zero_F) flow += f;
        }
        return flow;
    }
};

// サイズが同じで辞書順で次に大きい部分集合を求める
template <typename T>
T next_combination(T comb) {
    assert(comb > 0);
    T x = comb & (-comb), y = comb + x, z = comb & (~y);
    return ((z / x) >> 1) | y;
}

template <typename T>
void fast_zeta_transform(vector<T> &a, bool upper) {
    int n = a.size();
    assert((n & (n - 1)) == 0);
    for (int i = 1; i < n; i <<= 1) {
        for (int j = 0; j < n; j++) {
            if (!(j & i)) {
                if (upper) {
                    a[j] += a[j | i];
                } else {
                    a[j | i] += a[j];
                }
            }
        }
    }
}

template <typename T>
void fast_mobius_transform(vector<T> &a, bool upper) {
    int n = a.size();
    assert((n & (n - 1)) == 0);
    for (int i = 1; i < n; i <<= 1) {
        for (int j = 0; j < n; j++) {
            if (!(j & i)) {
                if (upper) {
                    a[j] -= a[j | i];
                } else {
                    a[j | i] -= a[j];
                }
            }
        }
    }
}

template <typename T>
void fast_hadamard_transform(vector<T> &a, bool inverse = false) {
    int n = a.size();
    assert((n & (n - 1)) == 0);
    for (int i = 1; i < n; i <<= 1) {
        for (int j = 0; j < n; j++) {
            if (!(j & i)) {
                T x = a[j], y = a[j | i];
                a[j] = x + y, a[j | i] = x - y;
            }
        }
    }
    if (inverse) {
        T inv = T(1) / T(n);
        for (auto &e : a) e *= inv;
    }
}

template <typename T>
vector<T> bitwise_and_convolve(vector<T> a, vector<T> b) {
    int n = a.size();
    assert(b.size() == n && (n & (n - 1)) == 0);
    fast_zeta_transform(a, true), fast_zeta_transform(b, true);
    for (int i = 0; i < n; i++) a[i] *= b[i];
    fast_mobius_transform(a, true);
    return a;
}

template <typename T>
vector<T> bitwise_or_convolve(vector<T> a, vector<T> b) {
    int n = a.size();
    assert(b.size() == n && (n & (n - 1)) == 0);
    fast_zeta_transform(a, false), fast_zeta_transform(b, false);
    for (int i = 0; i < n; i++) a[i] *= b[i];
    fast_mobius_transform(a, false);
    return a;
}

template <typename T>
vector<T> bitwise_xor_convolve(vector<T> a, vector<T> b) {
    int n = a.size();
    assert(b.size() == n && (n & (n - 1)) == 0);
    fast_hadamard_transform(a), fast_hadamard_transform(b);
    for (int i = 0; i < n; i++) a[i] *= b[i];
    fast_hadamard_transform(a, true);
    return a;
}

template <typename T>
vector<T> subset_convolve(const vector<T> &a, const vector<T> &b) {
    int n = a.size();
    assert(b.size() == n && (n & (n - 1)) == 0);
    int k = __builtin_ctz(n);
    vector<vector<T>> A(k + 1, vector<T>(n, 0)), B(k + 1, vector<T>(n, 0)), C(k + 1, vector<T>(n, 0));
    for (int i = 0; i < n; i++) {
        int t = __builtin_popcount(i);
        A[t][i] = a[i], B[t][i] = b[i];
    }
    for (int i = 0; i <= k; i++) fast_zeta_transform(A[i], false), fast_zeta_transform(B[i], false);
    for (int i = 0; i <= k; i++) {
        for (int j = 0; j <= k - i; j++) {
            for (int l = 0; l < n; l++) C[i + j][l] += A[i][l] * B[j][l];
        }
    }
    for (int i = 0; i <= k; i++) fast_mobius_transform(C[i], false);
    vector<T> c(n);
    for (int i = 0; i < n; i++) c[i] = C[__builtin_popcount(i)][i];
    return c;
}

int main() {
    comb::init(10000);

    int N;
    cin >> N;

    vector<int> S(N, 0);
    rep(i, N) {
        rep(j, 6) {
            int x;
            cin >> x;
            x--;
            S[i] |= 1 << x;
        }
    }

    vector<int> mi(1 << 9, 0);

    rep(i, 1 << N) {
        int x = 0;
        rep(j, N) {
            if (flg(i, j)) x |= S[j];
        }
        chmax(mi[x], __builtin_popcount(i));
    }

    mint ans = 0;

    vector<int> dp(1 << 9, 0);

    auto dfs = [&](int i, int s, mint prod, auto &&dfs) -> void {
        if (i == 9) {
            ans += prod;
            return;
        }
        rep(j, N - s + 1) {
            bool flag = true;
            rep(k, 1 << i) {
                dp[k | (1 << i)] = dp[k] + j;
                if (dp[k | (1 << i)] < mi[k | (1 << i)]) {
                    flag = false;
                    break;
                }
            }
            if (flag) dfs(i + 1, s + j, prod * comb::ifac(j), dfs);
        }
    };

    dfs(0, 0, 1, dfs);

    cout << ans * comb::fac(N) << '\n';
}
0