結果
| 問題 | No.2151 3 on Torus-Lohkous |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-12-03 04:37:36 |
| 言語 | D (dmd 2.109.1) |
| 結果 |
AC
|
| 実行時間 | 30 ms / 2,000 ms |
| コード長 | 10,927 bytes |
| コンパイル時間 | 1,866 ms |
| コンパイル使用メモリ | 172,488 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-06-22 16:56:57 |
| 合計ジャッジ時間 | 2,934 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 8 |
コンパイルメッセージ
/home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/numeric.d(2999): Warning: cannot inline function `std.numeric.gcdImpl!uint.gcdImpl`
ソースコード
import std.conv, std.functional, std.range, std.stdio, std.string;
import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons;
import core.bitop;
class EOFException : Throwable { this() { super("EOF"); } }
string[] tokens;
string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; }
int readInt() { return readToken.to!int; }
long readLong() { return readToken.to!long; }
real readReal() { return readToken.to!real; }
bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } }
bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } }
int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; }
int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); }
int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); }
struct ModInt(uint M_) {
import std.conv : to;
alias M = M_;
uint x;
this(ModInt a) { x = a.x; }
this(uint x_) { x = x_ % M; }
this(ulong x_) { x = cast(uint)(x_ % M); }
this(int x_) { x = ((x_ %= cast(int)(M)) < 0) ? (x_ + cast(int)(M)) : x_; }
this(long x_) { x = cast(uint)(((x_ %= cast(long)(M)) < 0) ? (x_ + cast(long)(M)) : x_); }
ref ModInt opAssign(T)(inout(T) a) if (is(T == uint) || is(T == ulong) || is(T == int) || is(T == long)) { return this = ModInt(a); }
ref ModInt opOpAssign(string op, T)(T a) {
static if (is(T == ModInt)) {
static if (op == "+") { x = ((x += a.x) >= M) ? (x - M) : x; }
else static if (op == "-") { x = ((x -= a.x) >= M) ? (x + M) : x; }
else static if (op == "*") { x = cast(uint)((cast(ulong)(x) * a.x) % M); }
else static if (op == "/") { this *= a.inv(); }
else static assert(false);
return this;
} else static if (op == "^^") {
if (a < 0) return this = inv()^^(-a);
ModInt b = this, c = 1U;
for (long e = a; e; e >>= 1) { if (e & 1) c *= b; b *= b; }
return this = c;
} else {
return mixin("this " ~ op ~ "= ModInt(a)");
}
}
ModInt inv() const {
uint a = M, b = x; int y = 0, z = 1;
for (; b; ) { const q = a / b; const c = a - q * b; a = b; b = c; const w = y - cast(int)(q) * z; y = z; z = w; }
assert(a == 1); return ModInt(y);
}
ModInt opUnary(string op)() const {
static if (op == "+") { return this; }
else static if (op == "-") { ModInt a; a.x = x ? (M - x) : 0U; return a; }
else static assert(false);
}
ModInt opBinary(string op, T)(T a) const { return mixin("ModInt(this) " ~ op ~ "= a"); }
ModInt opBinaryRight(string op, T)(T a) const { return mixin("ModInt(a) " ~ op ~ "= this"); }
bool opCast(T: bool)() const { return (x != 0U); }
string toString() const { return x.to!string; }
}
enum MO = 998244353;
alias Mint = ModInt!MO;
enum LIM_INV = 2 * 10^^5 + 10;
Mint[] inv, fac, invFac;
void prepare() {
inv = new Mint[LIM_INV];
fac = new Mint[LIM_INV];
invFac = new Mint[LIM_INV];
inv[1] = 1;
foreach (i; 2 .. LIM_INV) {
inv[i] = -((Mint.M / i) * inv[cast(size_t)(Mint.M % i)]);
}
fac[0] = invFac[0] = 1;
foreach (i; 1 .. LIM_INV) {
fac[i] = fac[i - 1] * i;
invFac[i] = invFac[i - 1] * inv[i];
}
}
Mint binom(long n, long k) {
if (n < 0) {
if (k >= 0) {
return (-1)^^(k & 1) * binom(-n + k - 1, k);
} else if (n - k >= 0) {
return (-1)^^((n - k) & 1) * binom(-k - 1, n - k);
} else {
return Mint(0);
}
} else {
if (0 <= k && k <= n) {
assert(n < LIM_INV);
return fac[cast(size_t)(n)] * invFac[cast(size_t)(k)] * invFac[cast(size_t)(n - k)];
} else {
return Mint(0);
}
}
}
int root(int[] uf, int u) {
return (uf[u] < 0) ? u : (uf[u] = uf.root(uf[u]));
}
bool connect(int[] uf, int u, int v) {
u = uf.root(u);
v = uf.root(v);
if (u == v) return false;
if (uf[u] > uf[v]) swap(u, v);
uf[u] += uf[v];
uf[v] = u;
return true;
}
int stressEasy(int H, int W) {
bool[][][] as;
auto a = new bool[][](H, W);
void init() {
foreach (x; 0 .. H) a[x][] = false;
}
void add() {
auto aa = new bool[][](H, W);
foreach (x; 0 .. H) aa[x][] = a[x][];
as ~= aa;
}
bool check() {
auto uf = new int[H * W];
uf[] = -1;
foreach (x; 0 .. H) foreach (y; 0 .. W) if (a[x][y]) {
if (a[(x + 1) % H][y]) uf.connect(x * W + y, ((x + 1) % H) * W + y);
if (a[x][(y + 1) % W]) uf.connect(x * W + y, x * W + ((y + 1) % W));
}
int numComps;
foreach (x; 0 .. H) foreach (y; 0 .. W) if (a[x][y]) {
if (uf[x * W + y] < 0) ++numComps;
}
if (numComps != 1) return false;
uf[] = -1;
foreach (x; 0 .. H) foreach (y; 0 .. W) if (a[x][y]) {
if (a[(x + 1) % H][y]) uf.connect(x * W + y, ((x + 1) % H) * W + y);
}
foreach (x; 0 .. H) foreach (y; 0 .. W) if (a[x][y]) {
if (-uf[uf.root(x * W + y)] != 3) return false;
}
uf[] = -1;
foreach (x; 0 .. H) foreach (y; 0 .. W) if (a[x][y]) {
if (a[x][(y + 1) % W]) uf.connect(x * W + y, x * W + ((y + 1) % W));
}
foreach (x; 0 .. H) foreach (y; 0 .. W) if (a[x][y]) {
if (-uf[uf.root(x * W + y)] != 3) return false;
}
void revX() {
foreach (x; 0 .. H) foreach (y; 0 .. W) if (x < H - 1 - x) {
swap(a[x][y], a[H - 1 - x][y]);
}
}
void revY() {
foreach (x; 0 .. H) foreach (y; 0 .. W) if (y < W - 1 - y) {
swap(a[x][y], a[x][W - 1 - y]);
}
}
add; revX; add; revY;
add; revX; add; revY;
return true;
}
foreach (x0; 0 .. H) foreach (y0; 0 .. W) {
init;
foreach (i; 0 .. 3) foreach (j; 0 .. 3) {
a[(x0 + i) % H][(y0 + j) % W] = true;
}
check;
}
foreach (x0; 0 .. H) foreach (y0; 0 .. W) {
init;
foreach (i; 0 .. H * W) foreach (j; 0 .. 3) {
a[(x0 + i) % H][(y0 + i + j) % W] = true;
}
check;
}
foreach (x0; 0 .. H) foreach (y0; 0 .. W) {
init;
foreach (i; 0 .. 3 * H * W) foreach (j; 0 .. 3) {
a[(x0 + i) % H][(y0 + i / 3 * 3 + [0, 0, 1][i % 3] + j) % W] = true;
}
check;
}
foreach (x0; 0 .. H) foreach (y0; 0 .. W) {
init;
foreach (i; 0 .. H) foreach (j; 0 .. W) if ([1, 3, 0, 2][i % 4] != j % 4) {
a[(x0 + i) % H][(y0 + j) % W] = true;
}
check;
}
return cast(int)(as.sort.uniq.array.length);
}
int[][] getCompositions(int n) {
int[][] ret;
void dfs(int m, int[] ps) {
if (m == 0) {
ret ~= ps.dup;
} else {
for (int p = 5; p <= m; p += 3) {
dfs(m - p, ps ~ p);
}
}
}
dfs(n, []);
return ret;
}
int stressHard(int H, int W) {
const N = gcd(H, W);
const pss = getCompositions(N / 2);
int[][][] as;
foreach (ps; pss) foreach (qs; pss) {
bool check() {
const psLen = cast(int)(ps.length);
const qsLen = cast(int)(qs.length);
auto psSum = new int[psLen + 1];
auto qsSum = new int[qsLen + 1];
foreach (i; 0 .. psLen) psSum[i + 1] = psSum[i] + ps[i];
foreach (j; 0 .. qsLen) qsSum[j + 1] = qsSum[j] + qs[j];
auto a = new int[][](H, W);
foreach (x; 0 .. H) a[x][] = -1;
foreach (s; 0 .. 2 * (H / N) * (W / N) + 1) foreach (t; 0 .. 2 * (H / N) * (W / N) + 1) {
foreach (i; 0 .. psLen + 1) foreach (j; 0 .. qsLen + 1) {
const x = ((((N / 2) * s + psSum[i]) - ((N / 2) * t + qsSum[j])) % H + H) % H;
const y = ((((N / 2) * s + psSum[i]) + ((N / 2) * t + qsSum[j])) % W + W) % W;
const color = ((s * psLen + i) + (t * qsLen + j)) & 1;
if (!~a[x][y]) a[x][y] = color;
if (a[x][y] != color) return false;
}
}
foreach (x; 0 .. H) foreach (y; 0 .. W) if (~a[x][y]) {
foreach (dx; -5 .. +5 + 1) foreach (dy; -5 .. +5 + 1) if (abs(dx) < 5 || abs(dy) < 5) {
const xx = ((x + dx) % H + H) % H;
const yy = ((y + dy) % W + W) % W;
if (!(x == xx && y == yy)) {
if (~a[xx][yy]) return false;
}
}
}
foreach (x; 0 .. H) foreach (y; 0 .. W) if (~a[x][y]) {
foreach (dx; [+1, -1]) foreach (dy; [+1, -1]) {
for (int k = 1; ; ++k) {
const xx = ((x + dx * k) % H + H) % H;
const yy = ((y + dy * k) % W + W) % W;
if (~a[xx][yy]) {
if (a[x][y] == a[xx][yy]) return false;
if (!(k >= 5 && (k - 5) % 3 == 0)) return false;
break;
}
}
}
}
debug {
writefln("stressHard(%s, %s)", H, W);
writefln("ps = %s, qs = %s", ps, qs);
foreach (x; 0 .. H) {
foreach (y; 0 .. W) {
write(".01"[a[x][y] + 1]);
}
writeln;
}
}
foreach (x0; 0 .. H) foreach (y0; 0 .. W) {
auto aa = new int[][](H, W);
foreach (x; 0 .. H) foreach (y; 0 .. W) {
aa[(x0 + x) % H][(y0 + y) % W] = a[x][y];
}
as ~= aa;
}
return true;
}
check;
}
return cast(int)(as.sort.uniq.array.length);
}
Mint easy(int H, int W, int N) {
Mint ans;
ans += Mint(H) * Mint(W);
if (N >= 4) {
ans += 2 * Mint(N);
}
if ((H % 3 == 0 || W % 3 == 0) && N >= 5) {
ans += 12 * Mint(N);
}
if (H % 4 == 0 && W % 4 == 0) {
ans += 16;
}
return ans;
}
Mint hard(int N) {
Mint ans;
if (N % 2 == 0) {
Mint[2] sums;
foreach (k; 1 .. N / 10 + 1) if ((N / 2 - 5 * k) % 3 == 0) {
sums[k & 1] += inv[k] * binom((N / 2 - 5 * k) / 3 + k - 1, k - 1);
}
static foreach (s; 0 .. 2) {
ans += (N * sums[s])^^2;
}
}
return ans;
}
Mint solve(int H, int W) {
const N = gcd(H, W);
Mint ans;
ans += easy(H, W, N);
ans += hard(N);
return ans;
}
void main() {
prepare;
/*
debug {{
enum lim = 40;
foreach (H; 4 .. lim + 1) foreach (W; 4 .. lim + 1) {
const str = stressEasy(H, W);
const eas = easy(H, W, gcd(H, W));
assert(str == eas.x, format("%s %s: %s %s", H, W, str, eas));
writefln("DONE H = %s, W = %s", H, W);
stdout.flush;
}
}}
//*/
/*
debug {{
enum lim = 50;
foreach (H; 4 .. lim + 1) foreach (W; 4 .. lim + 1) {
const str = stressHard(H, W);
const har = hard(gcd(H, W));
assert(str == har.x, format("%s %s: %s %s", H, W, str, har));
writefln("DONE H = %s, W = %s", H, W);
stdout.flush;
}
}}
//*/
try {
for (; ; ) {
const numCases = readInt;
foreach (caseId; 0 .. numCases) {
const H = readInt;
const W = readInt;
const ans = solve(H, W);
writeln(ans);
}
}
} catch (EOFException e) {
}
}