結果

問題 No.2152 [Cherry Anniversary 2] 19 Petals of Cherry
ユーザー tassei903tassei903
提出日時 2022-12-09 20:00:41
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 411 ms / 1,000 ms
コード長 2,603 bytes
コンパイル時間 345 ms
コンパイル使用メモリ 82,308 KB
実行使用メモリ 165,616 KB
最終ジャッジ日時 2024-10-14 18:49:45
合計ジャッジ時間 18,629 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 223 ms
165,124 KB
testcase_01 AC 249 ms
164,416 KB
testcase_02 AC 218 ms
165,616 KB
testcase_03 AC 361 ms
129,004 KB
testcase_04 AC 309 ms
159,184 KB
testcase_05 AC 396 ms
125,248 KB
testcase_06 AC 319 ms
160,128 KB
testcase_07 AC 329 ms
145,524 KB
testcase_08 AC 361 ms
128,640 KB
testcase_09 AC 278 ms
162,588 KB
testcase_10 AC 373 ms
126,904 KB
testcase_11 AC 305 ms
157,824 KB
testcase_12 AC 268 ms
162,776 KB
testcase_13 AC 312 ms
158,976 KB
testcase_14 AC 331 ms
145,152 KB
testcase_15 AC 335 ms
140,928 KB
testcase_16 AC 328 ms
137,148 KB
testcase_17 AC 361 ms
129,152 KB
testcase_18 AC 355 ms
128,640 KB
testcase_19 AC 345 ms
132,608 KB
testcase_20 AC 258 ms
164,476 KB
testcase_21 AC 390 ms
126,648 KB
testcase_22 AC 315 ms
159,688 KB
testcase_23 AC 312 ms
158,592 KB
testcase_24 AC 387 ms
125,664 KB
testcase_25 AC 361 ms
128,640 KB
testcase_26 AC 335 ms
141,344 KB
testcase_27 AC 309 ms
157,872 KB
testcase_28 AC 241 ms
164,988 KB
testcase_29 AC 248 ms
164,300 KB
testcase_30 AC 250 ms
164,596 KB
testcase_31 AC 251 ms
164,552 KB
testcase_32 AC 254 ms
164,052 KB
testcase_33 AC 260 ms
162,464 KB
testcase_34 AC 283 ms
161,220 KB
testcase_35 AC 300 ms
159,032 KB
testcase_36 AC 324 ms
157,780 KB
testcase_37 AC 356 ms
132,788 KB
testcase_38 AC 372 ms
128,876 KB
testcase_39 AC 385 ms
124,836 KB
testcase_40 AC 394 ms
124,944 KB
testcase_41 AC 398 ms
124,696 KB
testcase_42 AC 406 ms
124,836 KB
testcase_43 AC 411 ms
124,864 KB
testcase_44 AC 403 ms
125,172 KB
testcase_45 AC 376 ms
124,516 KB
testcase_46 AC 401 ms
124,640 KB
testcase_47 AC 217 ms
165,428 KB
testcase_48 AC 371 ms
128,768 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
#input = lambda :sys.stdin.readline()[:-1]
ni = lambda :int(input())
na = lambda :list(map(int,input().split()))
yes = lambda :print("yes");Yes = lambda :print("Yes");YES = lambda : print("YES")
no = lambda :print("no");No = lambda :print("No");NO = lambda : print("NO")
#######################################################################
n = 19
c = [0] * n
for i in range(n):
    que = na()
    for j in que[1:]:
        c[i] += 1<<j-1

dp = [0] * (1<<n)
dp[0] = 1
for i in range(n):
    ndp = [0] * (1<<n)
    ndp, dp = dp, ndp
    for j in range(1<<n):
        if ndp[j]==0:
            continue
        for k in range(n):
            if j >> k & 1:
                continue
            dp[j+(1<<k)] += ndp[j] * (c[i] >> k & 1)
from fractions import Fraction
#2D matrix

def add(x,y):
    return x + y

def mul(x, y):
    return x * y


def mat_add(A, B, replace=False):
    assert len(A)==len(B) and len(A[0]) == len(B[0])
    if not replace:
        A = [a.copy() for a in A]
    n = len(A)
    m = len(A[0])
    for i in range(n):
        for j in range(m):
            A[i][j] = add(A[i][j], B[i][j])
    return A


def mat_mul(A,B):
    assert len(A[0]) == len(B)
    n = len(A)
    m = len(B[0])
    p = len(A[0])
    R = [[0 for j in range(m)]for i in range(n)]
    for i in range(n):
        for j in range(m):
            for k in range(p):
                R[i][j] = add(R[i][j],mul(A[i][k],B[k][j]))
    return R

def mat_pow(A, x):
    assert len(A)==len(A[0])
    n = len(A)
    R = [[0 for j in range(n)]for i in range(n)]
    while x > 0:
        if x&1:
            R = mat_mul(R, A)
        A = mat_mul(A,A)
        x >>= 1
    return R


def determinant(A, replace=False):
    if not replace:
        A = [a.copy() for a in A]
    n = len(A)
    res = 1
    for i, a_i in enumerate(A):
        if a_i[i] == 0:
            for j in range(i+1, n):
                if A[j][i]:
                    break
            else:
                return 0
            A[i], A[j] = A[j], A[i]
            a_i = A[i]
            res = -res
        inv = 1/a_i[i]
        for j in range(i+1, n):
            a_j = A[j]
            t = a_j[i] * inv 
            for k in range(i+1, n):
                a_j[k] -= t * a_i[k]
    for i in range(n):
        res *= A[i][i]
    return res

def mat_pri(A):
    for i in A:
        print(*i)

def fractionize(A):
    for i in range(len(A)):
        for j in range(len(A[0])):
            A[i][j] = Fraction(A[i][j])

A = [[Fraction(c[i]>>j&1) for j in range(n)]for i in range(n)]

D = determinant(A)
C = dp[-1]
print(int(C+D)//2,int(C-D)//2)
0