結果
問題 | No.2156 ぞい文字列 |
ユーザー | mikam |
提出日時 | 2022-12-09 21:46:08 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 6,059 bytes |
コンパイル時間 | 4,765 ms |
コンパイル使用メモリ | 273,496 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-10-14 21:25:42 |
合計ジャッジ時間 | 5,454 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 16 |
ソースコード
#include <atcoder/all> using namespace atcoder; #include <bits/stdc++.h> using namespace std; // #include <boost/multiprecision/cpp_int.hpp> #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define rep2(i,a,b) for (int i = (int)(a); i < (int)(b); i++) #define all(v) v.begin(),v.end() #define inc(x,l,r) ((l)<=(x)&&(x)<(r)) #define Unique(x) sort(all(x)), x.erase(unique(all(x)), x.end()) typedef long long ll; #define int ll using ld = long double; using vi = vector<int>; using vs = vector<string>; using P = pair<int,int>; using vp = vector<P>; // using Bint = boost::multiprecision::cpp_int; template<typename T> using priority_queue_greater = priority_queue<T, vector<T>, greater<T>>; template<typename T> ostream &operator<<(ostream &os,const vector<T> &v){rep(i,v.size())os<<v[i]<<(i+1!=v.size()?" ":"");return os;} template<typename T> istream &operator>>(istream& is,vector<T> &v){for(T &in:v)is>>in;return is;} template<class... T> void _IN(T&... a){(cin>> ... >> a);} template<class T> void _OUT(T& a){cout <<a<< '\n';} template<class T,class... Ts> void _OUT(const T&a, const Ts&... b){cout<< a;(cout<<...<<(cout<<' ',b));cout<<'\n';} #define INT(...) int __VA_ARGS__; _IN(__VA_ARGS__) #define STR(...) string __VA_ARGS__; _IN(__VA_ARGS__) #define pcnt __builtin_popcountll int sign(int x){return (x>0)-(x<0);} int ceil(int x,int y){assert(y!=0);if(sign(x)==sign(y))return (x+y-1)/y;return -((-x/y));} int floor(int x,int y){assert(y!=0);if(sign(x)==sign(y))return x/y;if(y<0)x*=-1,y*=-1;return x/y-(x%y<0);} int abs(int x,int y){return abs(x-y);} bool ins(string s,string t){return s.find(t)!=string::npos;} P operator+ (const P &p, const P &q){ return P{p.first+q.first,p.second+q.second};} P operator- (const P &p, const P &q){ return P{p.first-q.first,p.second-q.second};} template<typename T1,typename T2> ostream &operator<< (ostream &os, const pair<T1,T2> &p){os << p.first <<" "<<p.second;return os;} ostream &operator<< (ostream &os, const modint1000000007 &m){os << m.val();return os;} istream &operator>> (istream &is, modint1000000007 &m){ll in;is>>in;m=in;return is;} ostream &operator<< (ostream &os, const modint998244353 &m){os << m.val();return os;} istream &operator>> (istream &is, modint998244353 &m){ll in;is>>in;m=in;return is;} template<typename T1,typename T2> bool chmax(T1 &a, const T2 b) {if (a < b) {a = b; return true;} else return false; } template<typename T1,typename T2> bool chmin(T1 &a, const T2 b) {if (a > b) {a = b; return true;} else return false; } void yesno(bool ok,string y="Yes",string n="No"){ cout<<(ok?y:n)<<endl;} int di[]={-1,0,1,0,-1,-1,1,1}; int dj[]={0,1,0,-1,-1,1,-1,1}; const int INF = 8e18; //using mint = modint1000000007; using mint = modint998244353; template<typename T=int> struct Matrix{ vector<vector<T>> A; Matrix(){}; Matrix(size_t n,size_t m):A(n,vector<T>(m,0)){}; Matrix(size_t n):A(n,vector<T>(n,0)){}; Matrix(vector<vector<T>> a) : A(a.size(),vector<T>(a[0].size())){ for(int i=0;i<a.size();i++)for(int j=0;j<a[0].size();j++)A[i][j] = a[i][j]; }; size_t height() const{ return (A.size()); } size_t width() const{ return (A[0].size()); } inline const vector<T> &operator[](int k) const{ return (A.at(k)); } inline vector<T> &operator[](int k){ return (A.at(k)); } static Matrix I(size_t n){ Matrix mat(n); rep(i,n) mat[i][i]=1; return (mat); } static Matrix O(size_t n){ Matrix mat(n); return (mat); } Matrix &operator+=(const Matrix &B){ size_t n = height(),m = width(); assert(n == B.height() && m == B.width()); for(int i=0;i<n;i++)for(int j=0;j<m;j++) (*this)[i][j] += B[i][j]; return *this; } Matrix &operator-=(const Matrix &B){ size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i=0;i<n;i++)for(int j=0;j<m;j++) (*this)[i][j] -= B[i][j]; return *this; } Matrix &operator*=(const Matrix &B){ size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector<vector<T>> C(n,vector<T>(m,0)); for(int i=0;i<n;i++)for(int j=0;j<m;j++)for(int k=0;k<p;k++) C[i][j] += (*this)[i][k]*B[k][j]; A.swap(C); return *this; } Matrix &operator+=(const T a){ size_t n = height(),m = width(); for(int i=0;i<n;i++)for(int j=0;j<m;j++) (*this)[i][j] += a; return *this; } Matrix &operator-=(const T a){ size_t n = height(),m = width(); for(int i=0;i<n;i++)for(int j=0;j<m;j++) (*this)[i][j] -= a; return *this; } Matrix &operator*=(const T a){ size_t n = height(),m = width(); for(int i=0;i<n;i++)for(int j=0;j<m;j++) (*this)[i][j] *= a; return *this; } Matrix &operator^=(long long k){ Matrix B = I(height()); while(k>0) { if(k&1) B *= (*this); (*this) *= (*this); k/=2; } A.swap(B.A); return *this; } Matrix operator+(const Matrix &B) const{return (Matrix(*this) += B);} Matrix operator-(const Matrix &B) const{return (Matrix(*this) -= B);} Matrix operator*(const Matrix &B) const{return (Matrix(*this) *= B);} Matrix operator+(const T a) const{return (Matrix(*this) += a);} Matrix operator-(const T a) const{return (Matrix(*this) -= a);} Matrix operator*(const T a) const{return (Matrix(*this) *= a);} Matrix operator^(const long long k) const{return (Matrix(*this) ^= k);} }; signed main() { cin.tie(0); ios_base::sync_with_stdio(false); cout << fixed << setprecision(20); INT(n); Matrix<mint> mat(2,2); mat[0][0] = 1; mat[0][1] = 1; mat[1][0] = 1; mat[1][1] = 0; mat^=(n-1); Matrix<mint> a(2,1); a[0][0] = 1; a[1][0] = 0; mat*=a; cout<<mat[0][0]+mat[1][0]-1<<endl; return 0; }