結果

問題 No.2159 Filling 4x4 array
ユーザー akakimidoriakakimidori
提出日時 2022-12-10 14:15:04
言語 Rust
(1.72.1)
結果
AC  
実行時間 1,592 ms / 5,000 ms
コード長 10,488 bytes
コンパイル時間 2,215 ms
コンパイル使用メモリ 172,248 KB
実行使用メモリ 6,984 KB
最終ジャッジ日時 2023-08-05 01:47:32
合計ジャッジ時間 35,027 ms
ジャッジサーバーID
(参考情報)
judge14 / judge15
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 18 ms
6,400 KB
testcase_01 AC 17 ms
6,384 KB
testcase_02 AC 18 ms
6,388 KB
testcase_03 AC 17 ms
6,292 KB
testcase_04 AC 1,160 ms
6,824 KB
testcase_05 AC 18 ms
6,388 KB
testcase_06 AC 23 ms
6,324 KB
testcase_07 AC 16 ms
6,332 KB
testcase_08 AC 23 ms
6,440 KB
testcase_09 AC 18 ms
6,364 KB
testcase_10 AC 18 ms
6,304 KB
testcase_11 AC 17 ms
6,416 KB
testcase_12 AC 18 ms
6,420 KB
testcase_13 AC 19 ms
6,384 KB
testcase_14 AC 25 ms
6,380 KB
testcase_15 AC 19 ms
6,360 KB
testcase_16 AC 18 ms
6,416 KB
testcase_17 AC 19 ms
6,304 KB
testcase_18 AC 18 ms
6,388 KB
testcase_19 AC 20 ms
6,436 KB
testcase_20 AC 16 ms
6,332 KB
testcase_21 AC 28 ms
6,468 KB
testcase_22 AC 17 ms
6,408 KB
testcase_23 AC 20 ms
6,432 KB
testcase_24 AC 20 ms
6,320 KB
testcase_25 AC 1,419 ms
6,972 KB
testcase_26 AC 1,514 ms
6,880 KB
testcase_27 AC 1,592 ms
6,952 KB
testcase_28 AC 1,496 ms
6,968 KB
testcase_29 AC 1,508 ms
6,924 KB
testcase_30 AC 1,575 ms
6,984 KB
testcase_31 AC 1,477 ms
6,964 KB
testcase_32 AC 1,283 ms
6,868 KB
testcase_33 AC 1,550 ms
6,984 KB
testcase_34 AC 1,462 ms
6,916 KB
testcase_35 AC 1,351 ms
6,956 KB
testcase_36 AC 1,268 ms
6,968 KB
testcase_37 AC 1,334 ms
6,912 KB
testcase_38 AC 1,495 ms
6,916 KB
testcase_39 AC 1,273 ms
6,916 KB
testcase_40 AC 1,471 ms
6,956 KB
testcase_41 AC 1,451 ms
6,956 KB
testcase_42 AC 1,480 ms
6,880 KB
testcase_43 AC 1,442 ms
6,972 KB
testcase_44 AC 1,498 ms
6,916 KB
testcase_45 AC 43 ms
6,588 KB
testcase_46 AC 18 ms
6,396 KB
testcase_47 AC 74 ms
6,700 KB
testcase_48 AC 18 ms
6,348 KB
testcase_49 AC 82 ms
6,672 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

use std::collections::*;

type Map<K, V> = BTreeMap<K, V>;

fn main() {
    input! {
        h: [usize; 4],
        w: [usize; 4],
    }
    let h = h.iter().map(|h| *h - 4).collect::<Vec<_>>();
    let w = w.iter().map(|h| *h - 4).collect::<Vec<_>>();
    let mut dp = Map::new();
    dp.insert(
        ([h[0], h[1], h[2], h[3]], [w[0], w[1], w[2], w[3]]),
        M::one(),
    );
    for _ in 0..30 {
        let mut memo = vec![M::zero(); 1 << 16];
        let mut key = vec![([0; 4], [0; 4]); 1 << 16];
        for ((h, w), dp) in dp {
            for x in 0usize..8 {
                let x = x | ((h[0] ^ x.count_ones() as usize) & 1) << 3;
                for y in 0usize..8 {
                    let x = x | (y | ((h[1] ^ y.count_ones() as usize) & 1) << 3) << 4;
                    for z in 0usize..8 {
                        let x = x | (z | ((h[2] ^ z.count_ones() as usize) & 1) << 3) << 8;
                        let mut bit = 0usize;
                        let mask = 1 | (1 << 4) | (1 << 8);
                        for (k, w) in w.iter().enumerate() {
                            let p = (*w ^ ((x >> k) & mask).count_ones() as usize) & 1;
                            bit |= p << k;
                        }
                        if (bit.count_ones() as usize ^ h[3]) & 1 == 0 {
                            let bit = x | (bit << 12);
                            let mask = mask | (1 << 12);
                            let mask = [
                                15,
                                15 << 4,
                                15 << 8,
                                15 << 12,
                                mask,
                                mask << 1,
                                mask << 2,
                                mask << 3,
                            ];
                            let mut nh = [0; 4];
                            let mut nw = [0; 4];
                            let mut ok = true;
                            let mut pos = 0;
                            for ((up, key), mask) in h
                                .iter()
                                .chain(w.iter())
                                .zip(nh.iter_mut().chain(nw.iter_mut()))
                                .zip(mask.iter())
                            {
                                let v = (bit & *mask).count_ones() as usize;
                                ok &= v <= *up;
                                *key = (*up - v) >> 1;
                                pos = (pos << 2) | (*key & 3);
                            }
                            if ok {
                                memo[pos] += dp;
                                key[pos] = (nh, nw);
                            }
                        }
                    }
                }
            }
        }
        dp = key
            .into_iter()
            .zip(memo.into_iter())
            .filter(|p| !p.1.is_zero())
            .collect()
    }
    let ans = dp
        .get(&([0, 0, 0, 0], [0, 0, 0, 0]))
        .map_or(M::zero(), |p| *p);
    println!("{}", ans);
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
// ---------- begin modint ----------
use std::marker::*;
use std::ops::*;

pub trait Modulo {
    fn modulo() -> u32;
}

pub struct ConstantModulo<const M: u32>;

impl<const M: u32> Modulo for ConstantModulo<{ M }> {
    fn modulo() -> u32 {
        M
    }
}

pub struct ModInt<T>(u32, PhantomData<T>);

impl<T> Clone for ModInt<T> {
    fn clone(&self) -> Self {
        Self::new_unchecked(self.0)
    }
}

impl<T> Copy for ModInt<T> {}

impl<T: Modulo> Add for ModInt<T> {
    type Output = ModInt<T>;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> AddAssign for ModInt<T> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<T: Modulo> Sub for ModInt<T> {
    type Output = ModInt<T>;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> SubAssign for ModInt<T> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<T: Modulo> Mul for ModInt<T> {
    type Output = ModInt<T>;
    fn mul(self, rhs: Self) -> Self::Output {
        let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
        Self::new_unchecked(v as u32)
    }
}

impl<T: Modulo> MulAssign for ModInt<T> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<T: Modulo> Neg for ModInt<T> {
    type Output = ModInt<T>;
    fn neg(self) -> Self::Output {
        if self.is_zero() {
            Self::zero()
        } else {
            Self::new_unchecked(T::modulo() - self.0)
        }
    }
}

impl<T> std::fmt::Display for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> std::fmt::Debug for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> Default for ModInt<T> {
    fn default() -> Self {
        Self::zero()
    }
}

impl<T: Modulo> std::str::FromStr for ModInt<T> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<T: Modulo> From<usize> for ModInt<T> {
    fn from(val: usize) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as usize) as u32)
    }
}

impl<T: Modulo> From<u64> for ModInt<T> {
    fn from(val: u64) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as u64) as u32)
    }
}

impl<T: Modulo> From<i64> for ModInt<T> {
    fn from(val: i64) -> ModInt<T> {
        let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        ModInt::new_unchecked(v)
    }
}

impl<T> ModInt<T> {
    pub fn new_unchecked(n: u32) -> Self {
        ModInt(n, PhantomData)
    }
    pub fn zero() -> Self {
        ModInt::new_unchecked(0)
    }
    pub fn one() -> Self {
        ModInt::new_unchecked(1)
    }
    pub fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<T: Modulo> ModInt<T> {
    pub fn new(d: u32) -> Self {
        ModInt::new_unchecked(d % T::modulo())
    }
    pub fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::one();
        let mut s = *self;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        t
    }
    pub fn inv(&self) -> Self {
        assert!(!self.is_zero());
        self.pow(T::modulo() as u64 - 2)
    }
    pub fn fact(n: usize) -> Self {
        (1..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn perm(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn binom(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        let k = k.min(n - k);
        let mut nu = Self::one();
        let mut de = Self::one();
        for i in 0..k {
            nu *= Self::from(n - i);
            de *= Self::from(i + 1);
        }
        nu * de.inv()
    }
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
    fact: Vec<ModInt<T>>,
    ifact: Vec<ModInt<T>>,
    inv: Vec<ModInt<T>>,
}

impl<T: Modulo> Precalc<T> {
    pub fn new(n: usize) -> Precalc<T> {
        let mut inv = vec![ModInt::one(); n + 1];
        let mut fact = vec![ModInt::one(); n + 1];
        let mut ifact = vec![ModInt::one(); n + 1];
        for i in 2..=n {
            fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
        }
        ifact[n] = fact[n].inv();
        if n > 0 {
            inv[n] = ifact[n] * fact[n - 1];
        }
        for i in (1..n).rev() {
            ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
            inv[i] = ifact[i] * fact[i - 1];
        }
        Precalc { fact, ifact, inv }
    }
    pub fn inv(&self, n: usize) -> ModInt<T> {
        assert!(n > 0);
        self.inv[n]
    }
    pub fn fact(&self, n: usize) -> ModInt<T> {
        self.fact[n]
    }
    pub fn ifact(&self, n: usize) -> ModInt<T> {
        self.ifact[n]
    }
    pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[n - k]
    }
    pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[k] * self.ifact[n - k]
    }
}
// ---------- end precalc ----------

type M = ModInt<ConstantModulo<998_244_353>>;
0