結果

問題 No.2164 Equal Balls
ユーザー 👑 emthrmemthrm
提出日時 2022-12-15 01:44:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 7,109 bytes
コンパイル時間 2,405 ms
コンパイル使用メモリ 206,088 KB
実行使用メモリ 11,036 KB
最終ジャッジ日時 2024-04-26 05:36:40
合計ジャッジ時間 9,434 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 5 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 3 ms
6,940 KB
testcase_06 AC 3 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 TLE -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
testcase_48 -- -
testcase_49 -- -
testcase_50 -- -
testcase_51 -- -
testcase_52 -- -
testcase_53 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <int M>
struct MInt {
  unsigned int v;
  MInt() : v(0) {}
  MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
  static constexpr int get_mod() { return M; }
  static void set_mod(const int divisor) { assert(divisor == M); }
  static void init(const int x = 10000000) {
    inv(x, true);
    fact(x);
    fact_inv(x);
  }
  static MInt inv(const int n, const bool init = false) {
    // assert(0 <= n && n < M && std::__gcd(n, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    const int prev = inverse.size();
    if (n < prev) {
      return inverse[n];
    } else if (init) {
      // "n!" and "M" must be disjoint.
      inverse.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        inverse[i] = -inverse[M % i] * (M / i);
      }
      return inverse[n];
    }
    int u = 1, v = 0;
    for (unsigned int a = n, b = M; b;) {
      const unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }
  static MInt fact(const int n) {
    static std::vector<MInt> factorial{1};
    const int prev = factorial.size();
    if (n >= prev) {
      factorial.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        factorial[i] = factorial[i - 1] * i;
      }
    }
    return factorial[n];
  }
  static MInt fact_inv(const int n) {
    static std::vector<MInt> f_inv{1};
    const int prev = f_inv.size();
    if (n >= prev) {
      f_inv.resize(n + 1);
      f_inv[n] = inv(fact(n).v);
      for (int i = n; i > prev; --i) {
        f_inv[i - 1] = f_inv[i] * i;
      }
    }
    return f_inv[n];
  }
  static MInt nCk(const int n, const int k) {
    if (n < 0 || n < k || k < 0) return 0;
    return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
                                  fact_inv(n - k) * fact_inv(k));
  }
  static MInt nPk(const int n, const int k) {
    return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
  }
  static MInt nHk(const int n, const int k) {
    return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
  }
  static MInt large_nCk(long long n, const int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv(k, true);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) {
      res *= inv(i) * n--;
    }
    return res;
  }
  MInt pow(long long exponent) const {
    MInt res = 1, tmp = *this;
    for (; exponent > 0; exponent >>= 1) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
    }
    return res;
  }
  MInt& operator+=(const MInt& x) {
    if ((v += x.v) >= M) v -= M;
    return *this;
  }
  MInt& operator-=(const MInt& x) {
    if ((v += M - x.v) >= M) v -= M;
    return *this;
  }
  MInt& operator*=(const MInt& x) {
    v = static_cast<unsigned long long>(v) * x.v % M;
    return *this;
  }
  MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
  bool operator==(const MInt& x) const { return v == x.v; }
  bool operator!=(const MInt& x) const { return v != x.v; }
  bool operator<(const MInt& x) const { return v < x.v; }
  bool operator<=(const MInt& x) const { return v <= x.v; }
  bool operator>(const MInt& x) const { return v > x.v; }
  bool operator>=(const MInt& x) const { return v >= x.v; }
  MInt& operator++() {
    if (++v == M) v = 0;
    return *this;
  }
  MInt operator++(int) {
    const MInt res = *this;
    ++*this;
    return res;
  }
  MInt& operator--() {
    v = (v == 0 ? M - 1 : v - 1);
    return *this;
  }
  MInt operator--(int) {
    const MInt res = *this;
    --*this;
    return res;
  }
  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(v ? M - v : 0); }
  MInt operator+(const MInt& x) const { return MInt(*this) += x; }
  MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
  friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
    return os << x.v;
  }
  friend std::istream& operator>>(std::istream& is, MInt& x) {
    long long v;
    is >> v;
    x = MInt(v);
    return is;
  }
};
using ModInt = MInt<MOD>;

int main() {
  constexpr int M = 300;
  int n, m; cin >> n >> m;
  vector<int> a(n), b(n);
  REP(i, n) cin >> a[i];
  REP(i, n) cin >> b[i];
  vector<ModInt> dp_(M * m * 2 + 1, 0);
  auto dp = next(dp_.begin(), M * m);
  dp[0] = 1;
  REP(i, m) {
    int lb = -M, ub = M;
    for (int k = i; k < n; k += m) {
      chmax(lb, -b[i]);
      chmin(ub, a[i]);
    }
    vector<ModInt> ways(ub - lb + 1, 1);
    for (int k = i; k < n; k += m) {
      vector<ModInt> tmp(ub - lb + 1, 0);
      for (int a_num = 0; a_num <= a[k]; ++a_num) {
        for (int b_num = 0; b_num <= b[k]; ++b_num) {
          const int num = a_num - b_num;
          if (lb <= num && num <= ub) tmp[num - lb] += ModInt::nCk(a[k], a_num) * ModInt::nCk(b[k], b_num);
        }
      }
      REP(i, ub - lb + 1) ways[i] *= tmp[i];
    }
    vector<ModInt> nxt_(M * m * 2 + 1, 0);
    auto nxt = next(nxt_.begin(), M * m);
    for (int j = -M * m; j <= M * m; ++j) {
      REP(k, ub - lb + 1) {
        if (-M * m <= j + k + lb && j + k + lb <= M * m) nxt[j + k + lb] += dp[j] * ways[k];
      }
    }
    dp_.swap(nxt_);
    dp = next(dp_.begin(), M * m);
  }
  cout << dp[0] << '\n';
  // ModInt ans = 0;
  // const auto f = [&](auto&& f, vector<int>& c, vector<int>& d, ModInt ways) -> void {
  //   if (c.size() < n) {
  //     const int i = c.size();
  //     for (int j = 0; j <= a[i]; ++j) {
  //       c.emplace_back(j);
  //       f(f, c, d, ways * ModInt::nCk(a[i], j));
  //       c.pop_back();
  //     }
  //   } else if (d.size() < n) {
  //     const int i = d.size();
  //     for (int j = 0; j <= b[i]; ++j) {
  //       d.emplace_back(j);
  //       f(f, c, d, ways * ModInt::nCk(b[i], j));
  //       d.pop_back();
  //     }
  //   } else {
  //     REP(i, n - m + 1) {
  //       int c_sum = 0, d_sum = 0;
  //       REP(j, m) c_sum += c[i + j];
  //       REP(j, m) d_sum += d[i + j];
  //       if (c_sum != d_sum) return;
  //     }
  //     ans += ways;
  //   }
  // };
  // vector<int> c, d;
  // c.reserve(n);
  // d.reserve(n);
  // f(f, c, d, 1);
  // assert(dp[0] == ans);
  return 0;
}
0