結果
| 問題 |
No.2164 Equal Balls
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2022-12-15 02:29:35 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 10,523 bytes |
| コンパイル時間 | 2,439 ms |
| コンパイル使用メモリ | 213,232 KB |
| 最終ジャッジ日時 | 2025-02-09 12:33:06 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 28 TLE * 23 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <int M>
struct MInt {
unsigned int v;
MInt() : v(0) {}
MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr int get_mod() { return M; }
static void set_mod(const int divisor) { assert(divisor == M); }
static void init(const int x = 10000000) {
inv(x, true);
fact(x);
fact_inv(x);
}
static MInt inv(const int n, const bool init = false) {
// assert(0 <= n && n < M && std::__gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) {
return inverse[n];
} else if (init) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * (M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
const int prev = factorial.size();
if (n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
const int prev = f_inv.size();
if (n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
inv(k, true);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
MInt& operator+=(const MInt& x) {
if ((v += x.v) >= M) v -= M;
return *this;
}
MInt& operator-=(const MInt& x) {
if ((v += M - x.v) >= M) v -= M;
return *this;
}
MInt& operator*=(const MInt& x) {
v = static_cast<unsigned long long>(v) * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
bool operator==(const MInt& x) const { return v == x.v; }
bool operator!=(const MInt& x) const { return v != x.v; }
bool operator<(const MInt& x) const { return v < x.v; }
bool operator<=(const MInt& x) const { return v <= x.v; }
bool operator>(const MInt& x) const { return v > x.v; }
bool operator>=(const MInt& x) const { return v >= x.v; }
MInt& operator++() {
if (++v == M) v = 0;
return *this;
}
MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
MInt operator+() const { return *this; }
MInt operator-() const { return MInt(v ? M - v : 0); }
MInt operator+(const MInt& x) const { return MInt(*this) += x; }
MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
template <int T>
struct NumberTheoreticTransform {
using ModInt = MInt<T>;
NumberTheoreticTransform() {
for (int i = 0; i < 23; ++i) {
if (primes[i][0] == ModInt::get_mod()) {
n_max = 1 << primes[i][2];
root = ModInt(primes[i][1]).pow((primes[i][0] - 1) >> primes[i][2]);
return;
}
}
assert(false);
}
template <typename U>
std::vector<ModInt> dft(const std::vector<U>& a) {
const int n = a.size();
int lg = 1;
while ((1 << lg) < n) ++lg;
std::vector<ModInt> b(1 << lg, 0);
std::copy(a.begin(), a.end(), b.begin());
calc(&b);
return b;
}
void idft(std::vector<ModInt>* a) {
const int n = a->size();
assert(__builtin_popcount(n) == 1);
calc(a);
std::reverse(std::next(a->begin()), a->end());
const ModInt inv_n = ModInt::inv(n);
for (int i = 0; i < n; ++i) {
(*a)[i] *= inv_n;
}
}
template <typename U>
std::vector<ModInt> convolution(const std::vector<U>& a,
const std::vector<U>& b) {
const int a_size = a.size(), b_size = b.size();
const int c_size = a_size + b_size - 1;
int lg = 1;
while ((1 << lg) < c_size) ++lg;
const int n = 1 << lg;
std::vector<ModInt> c(n, 0), d(n, 0);
std::copy(a.begin(), a.end(), c.begin());
calc(&c);
std::copy(b.begin(), b.end(), d.begin());
calc(&d);
for (int i = 0; i < n; ++i) {
c[i] *= d[i];
}
idft(&c);
c.resize(c_size);
return c;
}
private:
const int primes[23][3]{
{16957441, 329, 14},
{17006593, 26, 15},
{19529729, 770, 17},
{167772161, 3, 25},
{469762049, 3, 26},
{645922817, 3, 23},
{897581057, 3, 23},
{924844033, 5, 21},
{935329793, 3, 22},
{943718401, 7, 22},
{950009857, 7, 21},
{962592769, 7, 21},
{975175681, 17, 21},
{976224257, 3, 20},
{985661441, 3, 22},
{998244353, 3, 23},
{1004535809, 3, 21},
{1007681537, 3, 20},
{1012924417, 5, 21},
{1045430273, 3, 20},
{1051721729, 6, 20},
{1053818881, 7, 20},
{1224736769, 3, 24}
};
int n_max;
ModInt root;
std::vector<int> butterfly{0};
std::vector<std::vector<ModInt>> omega{{1}};
void calc(std::vector<ModInt>* a) {
const int n = a->size(), prev_n = butterfly.size();
if (n > prev_n) {
assert(n <= n_max);
butterfly.resize(n);
const int prev_lg = omega.size(), lg = __builtin_ctz(n);
for (int i = 1; i < prev_n; ++i) {
butterfly[i] <<= lg - prev_lg;
}
for (int i = prev_n; i < n; ++i) {
butterfly[i] = (butterfly[i >> 1] >> 1) | ((i & 1) << (lg - 1));
}
omega.resize(lg);
for (int i = prev_lg; i < lg; ++i) {
omega[i].resize(1 << i);
const ModInt tmp = root.pow((ModInt::get_mod() - 1) >> (i + 1));
for (int j = 0; j < (1 << (i - 1)); ++j) {
omega[i][j << 1] = omega[i - 1][j];
omega[i][(j << 1) + 1] = omega[i - 1][j] * tmp;
}
}
}
const int shift = __builtin_ctz(butterfly.size()) - __builtin_ctz(n);
for (int i = 0; i < n; ++i) {
const int j = butterfly[i] >> shift;
if (i < j) std::swap((*a)[i], (*a)[j]);
}
for (int block = 1, den = 0; block < n; block <<= 1, ++den) {
for (int i = 0; i < n; i += (block << 1)) {
for (int j = 0; j < block; ++j) {
const ModInt tmp = (*a)[i + j + block] * omega[den][j];
(*a)[i + j + block] = (*a)[i + j] - tmp;
(*a)[i + j] += tmp;
}
}
}
}
};
int main() {
constexpr int M = 300;
NumberTheoreticTransform<MOD> ntt;
int n, m; cin >> n >> m;
vector<int> a(n), b(n);
REP(i, n) cin >> a[i];
REP(i, n) cin >> b[i];
vector<ModInt> dp(M * m * 2 + 1, 0);
dp[M * m] = 1;
REP(i, m) {
int lb = -M, ub = M;
for (int k = i; k < n; k += m) {
chmax(lb, -b[k]);
chmin(ub, a[k]);
}
vector<ModInt> ways(ub - lb + 1, 1);
for (int k = i; k < n; k += m) {
vector<ModInt> c(a[k] + 1, 0), d(b[k] + 1, 0);
for (int j = 0; j <= a[k]; ++j) {
c[j] = ModInt::nCk(a[k], j);
}
for (int j = 0; j <= b[k]; ++j) {
d[b[k] - j] = ModInt::nCk(b[k], j);
}
const vector<ModInt> e = ntt.convolution(c, d);
for (int j = lb; j <= ub; ++j) {
ways[j - lb] *= e[j + b[k]];
}
}
const vector<ModInt> nxt = ntt.convolution(dp, ways);
fill(ALL(dp), 0);
copy(next(nxt.begin(), -lb), next(nxt.begin(), -lb + M * m * 2 + 1), dp.begin());
}
cout << dp[M * m] << '\n';
// ModInt ans = 0;
// const auto f = [&](auto&& f, vector<int>& c, vector<int>& d, ModInt ways) -> void {
// if (c.size() < n) {
// const int i = c.size();
// for (int j = 0; j <= a[i]; ++j) {
// c.emplace_back(j);
// f(f, c, d, ways * ModInt::nCk(a[i], j));
// c.pop_back();
// }
// } else if (d.size() < n) {
// const int i = d.size();
// for (int j = 0; j <= b[i]; ++j) {
// d.emplace_back(j);
// f(f, c, d, ways * ModInt::nCk(b[i], j));
// d.pop_back();
// }
// } else {
// REP(i, n - m + 1) {
// int c_sum = 0, d_sum = 0;
// REP(j, m) c_sum += c[i + j];
// REP(j, m) d_sum += d[i + j];
// if (c_sum != d_sum) return;
// }
// ans += ways;
// }
// };
// vector<int> c, d;
// c.reserve(n);
// d.reserve(n);
// f(f, c, d, 1);
// assert(dp[0] == ans);
return 0;
}
emthrm