結果
| 問題 |
No.2164 Equal Balls
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2022-12-15 02:48:30 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 10,323 bytes |
| コンパイル時間 | 2,663 ms |
| コンパイル使用メモリ | 214,644 KB |
| 最終ジャッジ日時 | 2025-02-09 12:37:52 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 23 WA * 2 TLE * 26 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <int M>
struct MInt {
unsigned int v;
MInt() : v(0) {}
MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr int get_mod() { return M; }
static void set_mod(const int divisor) { assert(divisor == M); }
static void init(const int x = 10000000) {
inv(x, true);
fact(x);
fact_inv(x);
}
static MInt inv(const int n, const bool init = false) {
// assert(0 <= n && n < M && std::__gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) {
return inverse[n];
} else if (init) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * (M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
const int prev = factorial.size();
if (n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
const int prev = f_inv.size();
if (n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
inv(k, true);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
MInt& operator+=(const MInt& x) {
if ((v += x.v) >= M) v -= M;
return *this;
}
MInt& operator-=(const MInt& x) {
if ((v += M - x.v) >= M) v -= M;
return *this;
}
MInt& operator*=(const MInt& x) {
v = static_cast<unsigned long long>(v) * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
bool operator==(const MInt& x) const { return v == x.v; }
bool operator!=(const MInt& x) const { return v != x.v; }
bool operator<(const MInt& x) const { return v < x.v; }
bool operator<=(const MInt& x) const { return v <= x.v; }
bool operator>(const MInt& x) const { return v > x.v; }
bool operator>=(const MInt& x) const { return v >= x.v; }
MInt& operator++() {
if (++v == M) v = 0;
return *this;
}
MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
MInt operator+() const { return *this; }
MInt operator-() const { return MInt(v ? M - v : 0); }
MInt operator+(const MInt& x) const { return MInt(*this) += x; }
MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
// https://github.com/beet-aizu/library/blob/master/mod/mint.cpp
template<typename T, T MOD = 1000000007>
struct Mint{
inline static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;}
Mint operator-(Mint a) const{return Mint(v)-=a;}
Mint operator*(Mint a) const{return Mint(v)*=a;}
Mint operator/(Mint a) const{return Mint(v)/=a;}
Mint operator+() const{return *this;}
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
static Mint comb(long long n,int k){
Mint num(1),dom(1);
for(int i=0;i<k;i++){
num*=Mint(n-i);
dom*=Mint(i+1);
}
return num/dom;
}
};
// https://github.com/beet-aizu/library/blob/master/convolution/numbertheoretictransform.cpp
constexpr int bmds(int x){
const int v[] = {1012924417, 924844033, 998244353,
897581057, 645922817};
return v[x];
}
constexpr int brts(int x){
const int v[] = {5, 5, 3, 3, 3};
return v[x];
}
template<int X>
struct NTT{
inline static constexpr int md = bmds(X);
inline static constexpr int rt = brts(X);
using M = Mint<int, md>;
vector< vector<M> > rts,rrts;
void ensure_base(int n){
if((int)rts.size()>=n) return;
rts.resize(n);rrts.resize(n);
for(int i=1;i<n;i<<=1){
if(!rts[i].empty()) continue;
M w=M(rt).pow((md-1)/(i<<1));
M rw=w.inv();
rts[i].resize(i);rrts[i].resize(i);
rts[i][0]=M(1);rrts[i][0]=M(1);
for(int k=1;k<i;k++){
rts[i][k]=rts[i][k-1]*w;
rrts[i][k]=rrts[i][k-1]*rw;
}
}
}
void ntt(vector<M> &as,bool f){
int n=as.size();
assert((n&(n-1))==0);
ensure_base(n);
for(int i=0,j=1;j+1<n;j++){
for(int k=n>>1;k>(i^=k);k>>=1);
if(i>j) swap(as[i],as[j]);
}
for(int i=1;i<n;i<<=1){
for(int j=0;j<n;j+=i*2){
for(int k=0;k<i;k++){
M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]);
as[i+j+k]=as[j+k]-z;
as[j+k]+=z;
}
}
}
if(f){
M tmp=M(n).inv();
for(int i=0;i<n;i++) as[i]*=tmp;
}
}
vector<M> multiply(vector<M> as,vector<M> bs){
int need=as.size()+bs.size()-1;
int sz=1;
while(sz<need) sz<<=1;
as.resize(sz,M(0));
bs.resize(sz,M(0));
ntt(as,0);ntt(bs,0);
for(int i=0;i<sz;i++) as[i]*=bs[i];
ntt(as,1);
as.resize(need);
return as;
}
vector<int> multiply(vector<int> as,vector<int> bs){
vector<M> am(as.size()),bm(bs.size());
for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]);
for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]);
vector<M> cm=multiply(am,bm);
vector<int> cs(cm.size());
for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v;
return cs;
}
};
int main() {
constexpr int M = 299;
NTT<2> ntt;
int n, m; cin >> n >> m;
vector<int> a(n), b(n);
REP(i, n) cin >> a[i];
REP(i, n) cin >> b[i];
vector<int> dp(M * m * 2 + 1, 0);
dp[M * m] = 1;
REP(i, m) {
int lb = -M, ub = M;
for (int k = i; k < n; k += m) {
chmax(lb, -b[k]);
chmin(ub, a[k]);
}
vector<int> ways(ub - lb + 1, 1);
for (int k = i; k < n; k += m) {
vector<int> c(a[k] + 1, 0), d(b[k] + 1, 0);
for (int j = 0; j <= a[k]; ++j) {
c[j] = ModInt::nCk(a[k], j).v;
}
for (int j = 0; j <= b[k]; ++j) {
d[b[k] - j] = ModInt::nCk(b[k], j).v;
}
const auto e = ntt.multiply(c, d);
for (int j = lb; j <= ub; ++j) {
ways[j - lb] = 1LL * ways[j - lb] * e[j + b[k]] % MOD;
}
}
const auto nxt = ntt.multiply(dp, ways);
copy(next(nxt.begin(), -lb), next(nxt.begin(), -lb + M * m * 2 + 1), dp.begin());
}
cout << dp[M * m] << '\n';
// ModInt ans = 0;
// const auto f = [&](auto&& f, vector<int>& c, vector<int>& d, ModInt ways) -> void {
// if (c.size() < n) {
// const int i = c.size();
// for (int j = 0; j <= a[i]; ++j) {
// c.emplace_back(j);
// f(f, c, d, ways * ModInt::nCk(a[i], j));
// c.pop_back();
// }
// } else if (d.size() < n) {
// const int i = d.size();
// for (int j = 0; j <= b[i]; ++j) {
// d.emplace_back(j);
// f(f, c, d, ways * ModInt::nCk(b[i], j));
// d.pop_back();
// }
// } else {
// REP(i, n - m + 1) {
// int c_sum = 0, d_sum = 0;
// REP(j, m) c_sum += c[i + j];
// REP(j, m) d_sum += d[i + j];
// if (c_sum != d_sum) return;
// }
// ans += ways;
// }
// };
// vector<int> c, d;
// c.reserve(n);
// d.reserve(n);
// f(f, c, d, 1);
// assert(dp[0] == ans);
return 0;
}
emthrm