結果
問題 | No.2164 Equal Balls |
ユーザー | 👑 Nachia |
提出日時 | 2022-12-15 10:27:02 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 23,200 bytes |
コンパイル時間 | 2,588 ms |
コンパイル使用メモリ | 123,708 KB |
実行使用メモリ | 231,196 KB |
最終ジャッジ日時 | 2024-11-13 23:58:42 |
合計ジャッジ時間 | 335,170 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | TLE | - |
testcase_01 | TLE | - |
testcase_02 | TLE | - |
testcase_03 | TLE | - |
testcase_04 | TLE | - |
testcase_05 | TLE | - |
testcase_06 | TLE | - |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | TLE | - |
testcase_10 | TLE | - |
testcase_11 | TLE | - |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | TLE | - |
testcase_20 | TLE | - |
testcase_21 | TLE | - |
testcase_22 | TLE | - |
testcase_23 | TLE | - |
testcase_24 | TLE | - |
testcase_25 | TLE | - |
testcase_26 | TLE | - |
testcase_27 | TLE | - |
testcase_28 | TLE | - |
testcase_29 | TLE | - |
testcase_30 | TLE | - |
testcase_31 | TLE | - |
testcase_32 | TLE | - |
testcase_33 | TLE | - |
testcase_34 | TLE | - |
testcase_35 | TLE | - |
testcase_36 | TLE | - |
testcase_37 | TLE | - |
testcase_38 | TLE | - |
testcase_39 | TLE | - |
testcase_40 | TLE | - |
testcase_41 | TLE | - |
testcase_42 | TLE | - |
testcase_43 | TLE | - |
testcase_44 | TLE | - |
testcase_45 | TLE | - |
testcase_46 | TLE | - |
testcase_47 | TLE | - |
testcase_48 | TLE | - |
testcase_49 | TLE | - |
testcase_50 | TLE | - |
testcase_51 | TLE | - |
testcase_52 | TLE | - |
testcase_53 | TLE | - |
ソースコード
#line 1 "Main.cpp" #include <iostream> #include <string> #include <vector> #include <algorithm> #include <utility> #line 1 "nachia\\atcoder\\convolution.hpp" #line 4 "nachia\\atcoder\\convolution.hpp" #include <array> #include <cassert> #include <type_traits> #line 1 "nachia\\atcoder\\internal_bit.hpp" #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #line 1 "nachia\\atcoder\\static_modint.hpp" #line 1 "nachia\\atcoder\\internal_modint_base.hpp" #line 1 "nachia\\atcoder\\internal_type_traits.hpp" #line 5 "nachia\\atcoder\\internal_type_traits.hpp" #include <numeric> #line 7 "nachia\\atcoder\\internal_type_traits.hpp" namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional< std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional< std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional< std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional< std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional< (is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional< (is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional< std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional< is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional< is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #line 7 "nachia\\atcoder\\internal_modint_base.hpp" namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal } // namespace atcoder #line 1 "nachia\\atcoder\\internal_math.hpp" #line 5 "nachia\\atcoder\\internal_math.hpp" namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m){ x %= m; if(x < 0) x += m; return x; } // Fast moduler by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { using u64 = unsigned long long; unsigned int _m; u64 im; // @param m `1 <= m` barrett(unsigned int m) : _m(m), im((u64)(-1) / m + 1){} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { u64 z = a; z *= b; #ifdef _MSC_VER u64 x; _umul128(z, im, &x); #else u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if(_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m){ if(m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1, y = safe_mod(x, m); while(n){ if(n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n){ if(n <= 1) return false; if(n == 2 || n == 7 || n == 61) return true; if(n % 2 == 0) return false; long long d = n - 1; while(d % 2 == 0) d /= 2; for(long long a : {2, 7, 61}){ long long t = d, y = pow_mod_constexpr(a, t, n); while(t != n - 1 && y != 1 && y != n - 1){ y = y * y % n; t <<= 1; } if(y != n - 1 && t % 2 == 0) return false; } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b){ a = safe_mod(a, b); if(a == 0) return {b, 0}; long long s = b, t = a, m0 = 0, m1 = 1; while(t){ long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if(m0 < 0) m0 += b / s; return {s, m0}; } // @param m must be prime constexpr int primitive_root_constexpr(int m){ if(m == 2) return 1; if(m == 167772161) return 3; if(m == 469762049) return 3; if(m == 754974721) return 11; if(m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m-1) / 2; while(x%2 == 0) x /= 2; for(int i=3; (long long)(i)*i <= x; i += 2){ if(x % i == 0){ divs[cnt++] = i; while(x % i == 0) x /= i; } } if(x>1) divs[cnt++] = x; for(int g=2; ; g++){ bool ok = true; for(int i=0; i<cnt; i++){ if(pow_mod_constexpr(g, (m-1) / divs[i], m) == 1){ ok = false; break; } } if(ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #line 10 "nachia\\atcoder\\static_modint.hpp" namespace atcoder { template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod(){ return m; } static mint raw(int v){ mint x; x.w = v; return x; } static_modint() : w(0){} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v){ long long x = (long long)(v % (long long)(umod())); if(x < 0) x += umod(); w = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v){ w = (unsigned int)(v % umod()); } static_modint(bool v){ w = ((unsigned int)(v) % umod()); } unsigned int val() const { return w; } mint& operator++(){ w++; if(w == umod()) w = 0; return *this; } mint& operator--(){ if(w == 0) w = umod(); w--; return *this; } mint operator++(int){ mint result = *this; ++*this; return result; } mint operator--(int){ mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs){ w += rhs.w; if(w >= umod()) w -= umod(); return *this; } mint& operator-=(const mint& rhs){ w -= rhs.w; if(w >= umod()) w += umod(); return *this; } mint& operator*=(const mint& rhs){ unsigned long long z = w; z *= rhs.w; w = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs){ return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while(n){ if(n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if(prime){ assert(w); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(w, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs){ return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs){ return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs){ return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs){ return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs){ return lhs.w == rhs.w; } friend bool operator!=(const mint& lhs, const mint& rhs){ return lhs.w != rhs.w; } private: unsigned int w; static constexpr unsigned int umod(){ return m; } static constexpr bool prime = internal::is_prime<m>; }; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; } // namespace internal } // namespace atcoder #line 11 "nachia\\atcoder\\convolution.hpp" namespace atcoder { namespace internal { template <class mint, int g = internal::primitive_root<mint::mod()>, internal::is_static_modint_t<mint>* = nullptr> struct fft_info { static constexpr int rank2 = bsf_constexpr(mint::mod()-1); std::array<mint, rank2+1> root; std::array<mint, rank2+1> iroot; std::array<mint, std::max(0, rank2-1)> rate2; std::array<mint, std::max(0, rank2-1)> irate2; std::array<mint, std::max(0, rank2-2)> rate3; std::array<mint, std::max(0, rank2-2)> irate3; fft_info(){ root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for(int i=rank2-1; i>=0; i--){ root[i] = root[i+1] * root[i+1]; iroot[i] = iroot[i+1] * iroot[i+1]; } mint prod = 1, iprod = 1; for(int i=0; i<=rank2-2; i++){ rate2[i] = root[i+2] * prod; irate2[i] = iroot[i+2] * iprod; prod *= iroot[i+2]; iprod *= root[i+2]; } prod = 1; iprod = 1; for(int i=0; i<=rank2-3; i++){ rate3[i] = root[i+3] * prod; irate3[i] = iroot[i+3] * iprod; prod *= iroot[i+3]; iprod *= root[i+3]; } } }; template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly(std::vector<mint>& a){ int n = int(a.size()); int h = internal::ceil_pow2(n); static const fft_info<mint> info; int len = 0; while(len < h){ if(h-len == 1){ int p = 1 << (h-len-1); mint rot = 1; for(int s=0; s<(1<<len); s++){ int offset = s << (h-len); for(int i=0; i<p; i++){ auto l = a[i+offset]; auto r = a[i+offset+p] * rot; a[i+offset] = l+r; a[i+offset+p] = l-r; } if(s+1 != (1<<len)) rot *= info.rate2[bsf(~(unsigned int)(s))]; } len++; } else { int p = 1 << (h-len-2); mint rot = 1, imag = info.root[2]; for(int s=0; s<(1<<len); s++){ mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h-len); for(int i=0; i<p; i++){ auto mod2 = 1ULL * mint::mod() * mint::mod(); auto a0 = 1ULL * a[i+offset].val(); auto a1 = 1ULL * a[i+offset+p].val() * rot.val(); auto a2 = 1ULL * a[i+offset+2*p].val() * rot2.val(); auto a3 = 1ULL * a[i+offset+3*p].val() * rot3.val(); auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val(); auto na2 = mod2 - a2; a[i+offset] = a0 + a2 + a1 + a3; a[i+offset+1*p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i+offset+2*p] = a0 + na2 + a1na3imag; a[i+offset+3*p] = a0 + na2 + (mod2 - a1na3imag); } if(s+1 != (1<<len)) rot *= info.rate3[bsf(~(unsigned int)(s))]; } len += 2; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly_inv(std::vector<mint>& a){ int n = int(a.size()); int h = internal::ceil_pow2(n); static const fft_info<mint> info; constexpr int MOD = mint::mod(); int len = h; while(len){ if(len == 1){ int p = 1 << (h-len); mint irot = 1; for(int s=0; s<(1<<(len-1)); s++){ int offset = s << (h-len+1); for(int i=0; i<p; i++){ auto l = a[i+offset]; auto r = a[i+offset+p]; a[i+offset] = l+r; a[i+offset+p] = (unsigned long long)(MOD + l.val() - r.val()) * irot.val(); } if(s+1 != (1<<(len-1))) irot *= info.irate2[bsf(~(unsigned int)(s))]; } len--; } else { int p = 1 << (h-len); mint irot = 1, iimag = info.iroot[2]; for(int s=0; s<(1<<(len-2)); s++){ mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h-len+2); for(int i=0; i<p; i++){ auto a0 = 1ULL * a[i+offset+0*p].val(); auto a1 = 1ULL * a[i+offset+1*p].val(); auto a2 = 1ULL * a[i+offset+2*p].val(); auto a3 = 1ULL * a[i+offset+3*p].val(); auto a2na3iimag = 1ULL * mint((MOD + a2 - a3) * iimag.val()).val(); a[i+offset] = a0 + a1 + a2 + a3; a[i+offset+1*p] = (a0 + (MOD - a1) + a2na3iimag) * irot.val(); a[i+offset+2*p] = (a0 + a1 + (MOD - a2) + (MOD - a3)) * irot2.val(); a[i+offset+3*p] = (a0 + (MOD - a1) + (MOD - a2na3iimag)) * irot3.val(); } if(s+1 != (1<<(len-2))) irot *= info.irate3[bsf(~(unsigned int)(s))]; } len -= 2; } } } template <class Elem> std::vector<Elem> convolution_naive(const std::vector<Elem>& a, const std::vector<Elem>& b){ int n = int(a.size()), m = int(b.size()); std::vector<Elem> ans(n+m-1); if(n < m){ for(int j=0; j<m; j++) for(int i=0; i<n; i++) ans[i+j] += a[i] * b[j]; } else { for(int i=0; i<n; i++) for(int j=0; j<m; j++) ans[i+j] += a[i] * b[j]; } return ans; } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b){ int n = int(a.size()), m = int(b.size()); int z = 1 << internal::ceil_pow2(n+m-1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for(int i=0; i<z; i++) a[i] *= b[i]; internal::butterfly_inv(a); a.resize(n+m-1); mint iz = mint(z).inv(); for(int i=0; i<n+m-1; i++) a[i] *= iz; return a; } } // namespace internal template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b){ int n = int(a.size()), m = int(b.size()); if(!n || !m) return {}; if(std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(const std::vector<mint>& a, const std::vector<mint>& b){ int n = int(a.size()), m = int(b.size()); if(!n || !m) return {}; if(std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr> std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b){ int n = int(a.size()), m = int(b.size()); if(!n || !m) return {}; using mint = static_modint<mod>; std::vector<mint> a2(n), b2(m); for(int i=0; i<n; i++) a2[i] = mint(a[i]); for(int i=0; i<m; i++) b2[i] = mint(b[i]); auto c2 = convolution(std::move(a2), std::move(b2)); std::vector<T> c(n+m-1); for(int i=0; i<n+m-1; i++) c[i] = c2[i].val(); return c; } std::vector<long long> convolution_ll( const std::vector<long long>& a, const std::vector<long long>& b) { int n = int(a.size()), m = int(b.size()); if(!n || !m) return {}; using u64 = unsigned long long; static constexpr u64 MOD1 = 754974721, MOD2 = 167772161, MOD3 = 469762049; static constexpr u64 M2M3 = MOD2 * MOD3, M1M3 = MOD1 * MOD3, M1M2 = MOD1 * MOD2; static constexpr u64 M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr u64 i1 = internal::inv_gcd(M2M3, MOD1).second; static constexpr u64 i2 = internal::inv_gcd(M1M3, MOD2).second; static constexpr u64 i3 = internal::inv_gcd(M1M2, MOD3).second; auto c1 = convolution<MOD1>(a, b); auto c2 = convolution<MOD2>(a, b); auto c3 = convolution<MOD3>(a, b); std::vector<long long> c(n+m-1); for(int i=0; i<n+m-1; i++){ u64 x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if(diff < 0) diff += MOD1; static constexpr u64 offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder #line 3 "nachia\\fps\\many-polynomial-product.hpp" namespace nachia{ template<class Modint> std::vector<Modint> ProductOfManyPolynomials(std::vector<std::vector<Modint>> poly){ if(poly.empty()) return {Modint(1)}; for(auto& p : poly) while(!p.empty() && p.back().val() == 0) p.pop_back(); for(auto& p : poly) if(p.size() == 0) return {Modint(0)}; for(size_t K=16; poly.size() != 1; K*=2){ size_t pos = poly.size(); for(size_t i=0; i<poly.size(); i++){ if(pos == poly.size() || poly[pos].size() + poly[i].size() - 1 > K){ pos = i; continue; } poly[pos] = atcoder::convolution(poly[pos], poly[i]); std::swap(poly[i--], poly.back()); poly.pop_back(); } } return std::move(poly[0]); } } // namespace nachia #line 3 "nachia\\math\\combination.hpp" namespace nachia{ template<class Modint> class Comb{ private: std::vector<Modint> F; std::vector<Modint> iF; public: void extend(int newN){ int prevN = (int)F.size() - 1; if(prevN >= newN) return; F.resize(newN+1); iF.resize(newN+1); for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i); iF[newN] = F[newN].inv(); for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i); } Comb(int n = 1){ F.assign(2, Modint(1)); iF.assign(2, Modint(1)); extend(n); } Modint factorial(int n) const { return F[n]; } Modint invFactorial(int n) const { return iF[n]; } Modint invOf(int n) const { return iF[n] * F[n-1]; } Modint comb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[r] * iF[n-r]; } Modint invComb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[r] * F[n-r]; } Modint perm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[n-r]; } Modint invPerm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[n-r]; } Modint operator()(int n, int r) const { return comb(n,r); } }; } // namespace nachia #line 8 "Main.cpp" using namespace std; using i32 = int32_t; using u32 = uint32_t; using i64 = int64_t; using u64 = uint64_t; #define rep(i,n) for(int i=0; i<(int)(n); i++) const i64 INF = 1001001001001001001; using Modint = atcoder::static_modint<998244353>; Modint Diff[301][301][601]; int main(){ const int Z = 300; nachia::Comb<Modint> comb(Z); int n, m; cin >> n >> m; vector<int> A(n), B(n); rep(i,n) cin >> A[i]; rep(i,n) cin >> B[i]; rep(a,Z+1) rep(b,a+1) rep(ca,a+1) rep(cb,b+1) Diff[a][b][Z+ca-cb] += comb.comb(a,ca) * comb.comb(b,cb); vector<vector<Modint>> Comb(m, vector<Modint>(2*Z+1, 1)); rep(i,n){ if(A[i] >= B[i]){ rep(d,2*Z+1) Comb[i%m][d] *= Diff[A[i]][B[i]][d]; } else{ rep(d,2*Z+1) Comb[i%m][d] *= Diff[B[i]][A[i]][2*Z-d]; } } auto anss = nachia::ProductOfManyPolynomials(std::move(Comb)); auto ans = anss[Z * m]; cout << ans.val() << '\n'; return 0; } struct ios_do_not_sync{ ios_do_not_sync(){ ios::sync_with_stdio(false); cin.tie(nullptr); } } ios_do_not_sync_instance;