結果

問題 No.2164 Equal Balls
ユーザー t33f
提出日時 2022-12-17 12:35:26
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 5,463 bytes
コンパイル時間 1,104 ms
コンパイル使用メモリ 93,640 KB
最終ジャッジ日時 2025-02-09 15:07:46
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 37 WA * 14
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:131:20: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  131 |     int n, m; scanf("%d %d", &n, &m);
      |               ~~~~~^~~~~~~~~~~~~~~~~
main.cpp:133:38: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  133 |     for (int i = 0; i < n; i++) scanf(" %d", &a[i]);
      |                                 ~~~~~^~~~~~~~~~~~~~
main.cpp:134:38: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  134 |     for (int i = 0; i < n; i++) scanf(" %d", &b[i]);
      |                                 ~~~~~^~~~~~~~~~~~~~

ソースコード

diff #
プレゼンテーションモードにする

#include <array>
#include <cstdio>
#include <cmath>
#include <cassert>
#include <vector>
#include <iostream>
using namespace std;
template<int mod>
class modint {
int val = 0;
constexpr static int normalize(long long x) {
if (0 <= x and x < mod) return static_cast<int>(x);
else { x %= mod; return static_cast<int>(x >= 0 ? x : x + mod); }
}
public:
static const int modulus = mod;
modint() {}
constexpr modint(long long n) : val(normalize(n)) {}
constexpr int value() const { return val; }
constexpr modint operator-() const { return modint(mod - val); }
constexpr modint inverse() const {
long long x = mod, y = val, p = 1, q = 0, r = 0, s = 1;
while (y != 0) {
long long u = x / y;
long long x0 = y; y = x - y * u; x = x0;
long long r0 = p - r * u, s0 = q - s * u;
p = r; r = r0; q = s; s = s0;
}
return modint(q);
}
constexpr const modint pow(long long e) const {
if (e < 0) return pow(-e).inverse();
long long ans = 1, p = val;
while (e > 0) {
if (e % 2 != 0) ans = (ans * p) % mod;
p = (p * p) % mod;
e >>= 1;
}
return modint(ans);
}
constexpr modint &operator+=(const modint r) {
val += r.value();
if (val >= mod) val -= mod;
return *this;
}
constexpr modint &operator-=(const modint r) {
val -= r.value();
if (val < 0) val += mod;
return *this;
}
constexpr modint &operator*=(const modint r) {
val = (long long)val * r.value() % mod;
return *this;
}
constexpr modint &operator/=(const modint r) {
if (r.value() == 2) {
val = (val % 2 ? val + mod : val) / 2;
} else {
val = (long long)val * r.inverse().value() % mod;
}
return *this;
}
friend constexpr modint operator+(const modint l, const modint r) {
const int newval = l.value() + r.value();
return newval >= mod ? newval - mod : newval;
}
friend constexpr modint operator-(const modint l, const modint r) { return l + (- r); }
friend constexpr modint operator*(const modint l, const modint r) { return (long long)l.value() * r.value(); }
friend constexpr modint operator/(const modint l, const modint r) { return l * r.inverse(); }
friend constexpr bool operator==(const modint l, const modint r) { return l.value() == r.value(); }
friend constexpr bool operator!=(const modint l, const modint r) { return l.value() != r.value(); }
};
constexpr int M = 998244353;
using mint = modint<M>;
namespace NTT {
template<typename T>
constexpr bool is_primitive_root(int i) {
constexpr int p = T::modulus;
int d = 2, r = p - 1;
while ((long long)d * d <= r) {
if (r % d == 0) {
if (T(i).pow((p - 1) / d).value() == 1) return false;
do { r /= d; } while (r % d == 0);
}
d++;
}
if (r > 1 and T(i).pow((p - 1) / r).value() == 1) return false;
return true;
}
template<typename T>
constexpr T primitive_root() {
constexpr int p = T::modulus;
for (int i = 2; i < p; i++) if (is_primitive_root<T>(i)) return i;
return 0;
}
template<typename T>
void ntt(vector<T> &a, bool inv) {
constexpr int p = T::modulus;
constexpr T r = primitive_root<T>();
const int n = int(a.size());
assert((p - 1) % n == 0);
const int expn = (p - 1) / n * (inv ? -1 : 1);
const T zn = r.pow(expn);
auto b = a;
for (int step = n / 2; step > 0; step /= 2) {
const T wn = zn.pow(step);
T w = 1;
for (int t = 0, tmax = n / step / 2; t < tmax; t++) {
for (int offset = 0; offset < step; offset++) {
const int i = offset + step * t, j = i + step * t;
assert(j + step < n);
const T x = a[j], y = w * a[j + step];
b[i] = x + y;
b[i + n/2] = x - y;
}
w *= wn;
}
if (inv) for (int i = 0; i < n; i++) b[i] /= 2;
swap(a, b);
}
}
};
int main() {
int n, m; scanf("%d %d", &n, &m);
vector<int> a(n), b(n);
for (int i = 0; i < n; i++) scanf(" %d", &a[i]);
for (int i = 0; i < n; i++) scanf(" %d", &b[i]);
vector<mint> q1(1 << 17, 1), q2(1 << 17, 1);
array<array<mint, 601>, 601> comb;
for (int i = 0; i < 601; ++i)
for (int j = 0; j < 601; ++j)
if (j == 0) comb[i][j] = 1;
else if (i == 0) comb[i][j] = 0;
else comb[i][j] = comb[i-1][j] + comb[i-1][j-1];
array<array<vector<mint>, 301>, 301> memo;
for (int i = 0; i < m; ++i) {
vector<mint> tmp(1 << 17, 0);
if (memo[a[i]][b[i]].empty()) {
for (int x = 300 - b[i]; x <= 300 + a[i]; ++x) {
mint t = 1;
for (int j = i; j < n; j += m)
t *= comb[a[j] + b[j]][x - 300 + b[j]];
tmp[x] = t;
}
memo[a[i]][b[i]] = tmp;
} else
tmp = memo[a[i]][b[i]];
NTT::ntt(tmp, false);
for (int j = 0; j < 1 << 17; ++j)
(i < m / 2 ? q1 : q2)[j] *= tmp[j];
}
NTT::ntt(q1, true);
NTT::ntt(q2, true);
const int offset = 300 * m;
mint ans = 0;
for (int i = 0; i <= offset; ++i)
ans += q1[i] * q2[offset - i];
cout << ans.value() << '\n';
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0