結果
| 問題 |
No.2167 Fibonacci Knapsack
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-12-20 19:27:03 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 5 ms / 2,000 ms |
| コード長 | 11,936 bytes |
| コンパイル時間 | 4,285 ms |
| コンパイル使用メモリ | 247,260 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-18 02:03:20 |
| 合計ジャッジ時間 | 5,125 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 21 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-12;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
// 手元環境(Visual Studio)
#ifdef _MSC_VER
#include "local.hpp"
// 提出用(gcc)
#else
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_list2D(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
#endif // 折りたたみ用
//--------------AtCoder 専用--------------
#include <atcoder/all>
using namespace atcoder;
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
//----------------------------------------
//【部分和問題(数え上げ)】O(n v)
/*
* 非負整数列 a[0..n) の部分和として i∈[0..v] を作る方法が何通りあるかを cnt[i] に格納し cnt を返す.
*
*(和を状態にもつ状態 DP)
*/
template <class T>
vector<T> count_partial_sum(const vi& a, int v) {
// 参考 : https://qiita.com/suisen_cp/items/794f24d31852b97d58a6
int n = sz(a);
// dp[i][j] : a[0..i) の中で和がちょうど j という状態をとる場合の数
vector<vector<T>> dp(n + 1, vector<T>(v + 1));
dp[0][0] = 1; // 空和が 0 であることに対応
// 貰う DP
rep(i, n) {
repi(j, 0, v) {
// i 番目の数を選ばない場合
dp[i + 1][j] = dp[i][j];
// i 番目の数が j より大きいと選べない.
if (j < a[i]) continue;
// i 番目の数を選ぶ場合を加算する.
dp[i + 1][j] += dp[i][j - a[i]];
}
}
return dp[n];
}
//【フィボナッチ数】O(n)
/*
* フィボナッチ数のリスト fib[0..n) を返す(fib[0]=0, fib[1]=1 とする.)
*/
template <class T>
vector<T> fibonacci(int n) {
// verify : https://atcoder.jp/contests/tenka1-2012-qualA/tasks/tenka1_2012_qualA_1
vector<T> fib(n);
fib[0] = 0;
fib[1] = 1;
repi(i, 2, n - 1) fib[i] = fib[i - 1] + fib[i - 2];
return fib;
}
void zikken() {
int n = 25;
auto a = fibonacci<int>(n);
a.erase(a.begin());
a.erase(a.begin());
dump(a.back());
auto res = count_partial_sum<ll>(a, a.back());
// dump_list(res);
repe(x, a) cerr << res[x] << " ";
cerr << endl;
exit(0);
}
/*
{1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, 4, 3, 3, 5, 2, 4}
http://oeis.org/A000119
定数倍は小さそうだけど O(n)?
だとしたら重さ = 価値に設定されると枝刈りが効かずバックトラッキングでは TLE する.(←誤り)
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12
n がフィボナッチ数なら分割の仕方は O(log n) で抑えられる.
*/
//【フィボナッチ進法表示】
/*
* Fibonacci_representation(ll n) : O(log n)
* n 以下の整数のフィボナッチ進法表示を求められるよう初期化する.
*
* ll fibonacci(int i) : O(1)
* i 番目のフィボナッチ数 fib[i] を得る(fib[0] = 0, fib[1] = 1 とする.)
*
* vi get_digits(ll n) : O(log n)
* n のフィボナッチ進法表示を返す.(下位から順)
* 桁の数は {0, 1} であり,1 は連続せず,下 2 桁は常に "00" である.
*/
class Fibonacci_representation {
int m;
vl fib;
public:
// n 以下の整数のフィボナッチ進法表示を求められるよう初期化する.
Fibonacci_representation(ll n) {
// verify : https://atcoder.jp/contests/arc122/tasks/arc122_c
fib = vl{ 0, 1 }; m = 2;
while (fib[m - 1] <= n) {
fib.push_back(fib[m - 1] + fib[m - 2]);
m++;
}
}
// i 番目のフィボナッチ数 fib[i] を得る(fib[0] = 0, fib[1] = 1 とする.)
ll fibonacci(int i) {
Assert(0 <= i && i < m);
return fib[i];
}
// n のフィボナッチ進法表示を返す(下位から順)
vi get_digits(ll n) {
// verify : https://atcoder.jp/contests/arc122/tasks/arc122_c
if (n == 0) return vi{ 0 };
int i = 2;
while (fib[i] <= n) i++;
vi ds(i);
i--;
while (i >= 2) {
if (fib[i] <= n) {
ds[i] = 1;
n -= fib[i];
}
else ds[i] = 0;
i--;
}
ds[1] = ds[0] = 0;
return ds;
}
};
void zikken2() {
Fibonacci_representation FR((ll)1e18);
dump(FR.get_digits(6728), 23);
dump(FR.get_digits(6764), 1);
dump(FR.get_digits(6765), 10);
dump("----");
dump(FR.get_digits(6739), 30);
ll x = FR.fibonacci(6) + FR.fibonacci(8);
ll y = FR.fibonacci(4) + FR.fibonacci(6) + FR.fibonacci(8) + FR.fibonacci(10) + FR.fibonacci(12);
dump(FR.get_digits(x), x, 5);
dump(FR.get_digits(y), y, 6);
exit(0);
}
/*
0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 23 = 3 * 6 + 5
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10
----
0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 30 = 5 * 6
0 0 0 0 0 0 1 0 1 29 5
0 0 0 0 1 0 1 0 1 0 1 0 1 231 6
*/
ll naive(int n, ll W, vl w) {
auto v = fibonacci<ll>(n + 2);
v.erase(v.begin(), v.begin() + 2);
// dp[i][j] : 品物 [i..n) の中で価値ちょうど j を実現できる最小重さ
vector<map<ll, ll>> dp(n + 1);
dp[n][0] = 0;
repir(i, n - 1, 0) {
repe(tmp, dp[i + 1]) {
ll j, w_min;
tie(j, w_min) = tmp;
// 品物 i を選ばない場合
if (dp[i].count(j)) chmin(dp[i][j], w_min);
else dp[i][j] = w_min;
// 品物 i を選ぶ場合
if (dp[i].count(j + v[i])) chmin(dp[i][j + v[i]], w_min + w[i]);
else dp[i][j + v[i]] = w_min + w[i];
}
}
dumpel(dp);
ll res = 0;
repe(tmp, dp[0]) {
ll j, w_min;
tie(j, w_min) = tmp;
if (w_min <= W) chmax(res, j);
}
return res;
}
/*
1
5 7
1 2 3 4 5
0: (0,0) (1,1) (2,2) (3,3) (4,4) (5,4) (6,5) (7,6) (8,5) (9,6) (10,7) (11,8) (12,9) (13,9) (14,10) (15,11) (16,12) (17,13) (18,14) (19,15)
1: (0,0) (2,2) (3,3) (5,4) (7,6) (8,5) (10,7) (11,8) (13,9) (15,11) (16,12) (18,14)
2: (0,0) (3,3) (5,4) (8,5) (11,8) (13,9) (16,12)
3: (0,0) (5,4) (8,5) (13,9)
4: (0,0) (8,5)
5: (0,0)
10
*/
ll solve(int n, ll W, vl w) {
auto v = fibonacci<ll>(n + 4);
v.erase(v.begin(), v.begin() + 2);
// dp[i][j] : 品物 [i..n) の中で価値ちょうど j を実現できる最小重さ
vector<map<ll, ll>> dp(n + 1);
dp[n][0] = 0;
ll v_lb = 0;
repir(i, n - 1, 0) {
repe(tmp, dp[i + 1]) {
ll j, w_min;
tie(j, w_min) = tmp;
// 品物 i を選ばない場合
if (j + v[i + 1] - 2 >= v_lb) {
if (dp[i].count(j)) chmin(dp[i][j], w_min);
else dp[i][j] = w_min;
}
// 品物 i を選ぶ場合
if (j + v[i] + v[i + 1] - 2 >= v_lb && w_min + w[i] <= W) {
if (dp[i].count(j + v[i])) chmin(dp[i][j + v[i]], w_min + w[i]);
else dp[i][j + v[i]] = w_min + w[i];
chmax(v_lb, j + v[i]);
}
}
}
dumpel(dp);
ll res = 0;
repe(tmp, dp[0]) {
ll j, w_min;
tie(j, w_min) = tmp;
if (w_min <= W) chmax(res, j);
}
return res;
}
/*
1
5 7
1 2 3 4 5
0: (9,6) (10,7)
1: (7,6) (8,5) (10,7)
2: (5,4) (8,5)
3: (5,4) (8,5)
4: (0,0) (8,5)
5: (0,0)
10
1
18 6739
1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
0: (6738,6738) (6739,6739)
1: (6738,6738) (6739,6739)
2: (6736,6736) (6739,6739)
3: (6736,6736) (6739,6739)
4: (6723,6723) (6731,6731) (6739,6739)
5: (6723,6723) (6731,6731)
6: (6697,6697) (6710,6710) (6731,6731)
7: (6676,6676) (6710,6710)
8: (6676,6676) (6710,6710)
9: (6532,6532) (6621,6621) (6710,6710)
10: (6532,6532) (6621,6621)
11: (6155,6155) (6388,6388) (6621,6621)
12: (6155,6155) (6388,6388)
13: (5168,5168) (5778,5778) (6388,6388)
14: (5168,5168) (5778,5778)
15: (2584,2584) (4181,4181) (5778,5778)
16: (2584,2584) (4181,4181)
17: (0,0) (4181,4181)
18: (0,0)
6739
効かないと思ってた枝刈りがめちゃめちゃ効いてる.
簡単に実装できるんだからとりあえずやってみるべきだった.
*/
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
// zikken2();
//【解説 AC】
// 効かないと思って考えてなかった枝刈りの方針でいけるみたい.
int t;
cin >> t;
rep(hoge, t) {
int n; ll W;
cin >> n >> W;
vl w(n);
cin >> w;
// dump(naive(n, W, w));
cout << solve(n, W, w) << endl;
}
}