結果
問題 | No.2164 Equal Balls |
ユーザー | siganai |
提出日時 | 2022-12-21 14:03:43 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 15,012 bytes |
コンパイル時間 | 2,360 ms |
コンパイル使用メモリ | 222,820 KB |
実行使用メモリ | 445,484 KB |
最終ジャッジ日時 | 2024-11-18 02:42:54 |
合計ジャッジ時間 | 154,325 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,323 ms
228,260 KB |
testcase_01 | AC | 1,315 ms
442,496 KB |
testcase_02 | AC | 1,294 ms
228,384 KB |
testcase_03 | AC | 1,280 ms
442,496 KB |
testcase_04 | AC | 1,310 ms
444,024 KB |
testcase_05 | AC | 1,282 ms
444,012 KB |
testcase_06 | AC | 1,276 ms
228,128 KB |
testcase_07 | AC | 1,281 ms
444,072 KB |
testcase_08 | AC | 2,222 ms
444,076 KB |
testcase_09 | AC | 2,285 ms
228,260 KB |
testcase_10 | AC | 1,450 ms
444,208 KB |
testcase_11 | TLE | - |
testcase_12 | AC | 2,349 ms
221,264 KB |
testcase_13 | AC | 1,726 ms
221,384 KB |
testcase_14 | AC | 2,021 ms
221,260 KB |
testcase_15 | TLE | - |
testcase_16 | AC | 2,318 ms
221,260 KB |
testcase_17 | AC | 1,349 ms
221,256 KB |
testcase_18 | AC | 3,129 ms
221,260 KB |
testcase_19 | TLE | - |
testcase_20 | AC | 2,715 ms
221,260 KB |
testcase_21 | AC | 1,298 ms
221,312 KB |
testcase_22 | AC | 1,292 ms
221,260 KB |
testcase_23 | AC | 1,508 ms
222,364 KB |
testcase_24 | AC | 1,494 ms
221,740 KB |
testcase_25 | AC | 1,484 ms
222,080 KB |
testcase_26 | AC | 1,635 ms
221,392 KB |
testcase_27 | AC | 1,563 ms
221,876 KB |
testcase_28 | AC | 1,582 ms
221,900 KB |
testcase_29 | AC | 1,372 ms
221,484 KB |
testcase_30 | AC | 1,488 ms
221,876 KB |
testcase_31 | AC | 1,557 ms
222,496 KB |
testcase_32 | AC | 1,581 ms
221,940 KB |
testcase_33 | AC | 1,431 ms
221,952 KB |
testcase_34 | AC | 1,580 ms
222,072 KB |
testcase_35 | AC | 1,321 ms
221,432 KB |
testcase_36 | AC | 1,686 ms
222,700 KB |
testcase_37 | AC | 1,594 ms
222,716 KB |
testcase_38 | TLE | - |
testcase_39 | TLE | - |
testcase_40 | TLE | - |
testcase_41 | TLE | - |
testcase_42 | TLE | - |
testcase_43 | TLE | - |
testcase_44 | TLE | - |
testcase_45 | TLE | - |
testcase_46 | TLE | - |
testcase_47 | TLE | - |
testcase_48 | TLE | - |
testcase_49 | AC | 1,518 ms
222,720 KB |
testcase_50 | AC | 1,528 ms
222,720 KB |
testcase_51 | AC | 1,525 ms
222,828 KB |
testcase_52 | AC | 1,585 ms
222,848 KB |
testcase_53 | AC | 1,517 ms
445,484 KB |
ソースコード
#line 1 "test.cpp" //#pragma GCC target("avx2") //#pragma GCC optimize("O3") //#pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; #ifdef LOCAL #include <debug.hpp> #define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else #define debug(...) (static_cast<void>(0)) #endif using ll = long long; using ld = long double; using pll = pair<ll,ll>; using pii = pair<int,int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vpii = vector<pii>; using vpll = vector<pll>; using vs = vector<string>; template<class T> using pq = priority_queue<T,vector<T>,greater<T>>; #define overload4(_1, _2, _3, _4, name, ...) name #define overload3(a,b,c,name,...) name #define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER) #define rep2(i, n) for (ll i = 0; i < (n); ++i) #define rep3(i, a, b) for (ll i = (a); i < (b); ++i) #define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) for(ll i = (n) - 1;i >= 0;i--) #define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--) #define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--) #define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c) #define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define all1(i) begin(i),end(i) #define all2(i,a) begin(i),begin(i)+a #define all3(i,a,b) begin(i)+a,begin(i)+b #define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__) #define sum(...) accumulate(all(__VA_ARGS__),0LL) template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; } template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; } template<class T> auto min(const T& a){ return *min_element(all(a)); } template<class T> auto max(const T& a){ return *max_element(all(a)); } template<class... Ts> void in(Ts&... t); #define INT(...) int __VA_ARGS__; in(__VA_ARGS__) #define LL(...) ll __VA_ARGS__; in(__VA_ARGS__) #define STR(...) string __VA_ARGS__; in(__VA_ARGS__) #define CHR(...) char __VA_ARGS__; in(__VA_ARGS__) #define DBL(...) double __VA_ARGS__; in(__VA_ARGS__) #define LD(...) ld __VA_ARGS__; in(__VA_ARGS__) #define VEC(type, name, size) vector<type> name(size); in(name) #define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name) ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;} ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; } ll GCD(ll a,ll b) { if(a == 0 || b == 0) return a + b; if(a % b == 0) return b; else return GCD(b,a%b);} ll LCM(ll a,ll b) { if(a == 0) return b; if(b == 0) return a;return a / GCD(a,b) * b;} namespace IO{ #define VOID(a) decltype(void(a)) struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(12);}} setting; template<int I> struct P : P<I-1>{}; template<> struct P<0>{}; template<class T> void i(T& t){ i(t, P<3>{}); } void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; } template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; } template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); } template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){ in(get<idx>(t)...);} template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ ituple(t, make_index_sequence<tuple_size<T>::value>{});} #undef VOID } #define unpack(a) (void)initializer_list<int>{(a, 0)...} template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); } #undef unpack //constexpr int mod = 1000000007; constexpr int mod = 998244353; static const double PI = 3.1415926535897932; template <class F> struct REC { F f; REC(F &&f_) : f(forward<F>(f_)) {} template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }}; #line 2 "library/modint/LazyMontgomeryModint.hpp" template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1); static_assert(mod < (1 << 30)); static_assert((mod & 1) == 1); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; #line 87 "test.cpp" using mint = LazyMontgomeryModInt<mod>; using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; vector<mint> fact, fact_inv; void make_fact(int n){ fact.resize(n+1), fact_inv.resize(n+1); fact[0] = mint(1); rep(i,1,n+1) fact[i] = fact[i-1] * mint(i); fact_inv[n] = fact[n].inverse(); rrep(i,0,n) fact_inv[i] = fact_inv[i+1] * mint(i+1); } mint ncr(int n, int r){ if(n < 0 || r < 0 || n < r) return mint(0); return fact[n] * fact_inv[r] * fact_inv[n-r];} mint npr(int n, int r){ if(n < 0 || r < 0 || n < r) return mint(0); return fact[n] * fact_inv[n-r]; } #line 2 "library/ntt/ntt.hpp" template<typename mint> struct NTT{ static constexpr uint32_t get_pr() { uint32_t _mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = _mod - 1; for(u64 i = 2;i * i <= m; ++i) { if(m % i == 0) { ds[idx++] = i; while(m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t _pr = 2; while(1) { int flg = 1; for(int i = 0;i < idx; ++i) { u64 a = _pr, b = (_mod - 1) / ds[i],r = 1; while(b) { if(b & 1) r = r * a % _mod; a = a * a % _mod; b >>= 1; } if(r == 1) { flg = 0; break; } } if (flg == 1) break; ++_pr; } return _pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; void setwy(int k) { mint w[level],y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for(int i = k - 2;i > 0; --i) w[i] = w[i+1] * w[i+1],y[i] = y[i+1] * y[i+1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for(int i = 3;i < k;++i) { dw[i] = dw[i-1] * y[i-2] * w[i]; dy[i] = dy[i-1] * w[i-2] * y[i]; } } NTT() {setwy(level);} void fft4(vector<mint> &a,int k) { if((int)a.size() <= 1) return; if(k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); for(int j = 0;j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while(v) { { int j0 = 0,j1 = v; int j2 = j1 + v; int j3 = j2 + v; for(;j0 < v; ++j0,++j1,++j2,++j3) { mint t0 = a[j0], t1 = a[j1],t2 = a[j2],t3 = a[j3]; mint t0p2 = t0 + t2,t1p3 = t1 + t3; mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3; } } mint ww = one,xx = one * dw[2],wx = one; for(int jh = 4;jh < u;) { ww = xx * xx,wx = ww * xx; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for(;j0 < je;++j0,++j2) { mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,t3 = a[j2 + v] * wx; mint t0p2 = t0 + t2,t1p3 = t1 + t3; mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3; } xx *= dw[__builtin_ctzll((jh += 4))]; } u <<= 2; v >>= 2; } } void ifft4(vector<mint> &a,int k) { if((int)a.size() <= 1) return; if(k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while(u) { { int j0 = 0,j1 = v; int j2 = j1 + v; int j3 = j2 + v; for(;j0 < v;++j0,++j1,++j2,++j3) { mint t0 = a[j0],t1 = a[j1],t2 = a[j2],t3 = a[j3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag; a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3; a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3; } } mint ww = one,xx = one * dy[2],yy = one; u <<= 2; for(int jh = 4;jh < u;) { ww = xx * xx,yy = xx * imag; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for(;j0 < je;++j0,++j2) { mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww; a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww; } xx *= dy[__builtin_ctzll(jh += 4)]; } u >>= 4; v <<= 2; } if(k & 1) { u = 1 << (k - 1); for(int j = 0;j < u;++j) { mint ajv = a[j] - a[j+u]; a[j] += a[j+u]; a[j+u] = ajv; } } } void ntt(vector<mint> &a) { if((int)a.size() <= 1) return; fft4(a,__builtin_ctz(a.size())); } void intt(vector<mint> &a) { if((int)a.size() <= 1) return; ifft4(a,__builtin_ctz(a.size())); mint iv = mint(a.size()).inverse(); for(auto &x:a) x *= iv; } vector<mint> multiply(const vector<mint> &a,const vector<mint> &b) { int l = a.size() + b.size() - 1; if(min<int>(a.size(),b.size()) <= 40) { vector<mint> s(l); for(int i = 0;i < (int)a.size();++i) for(int j = 0;j < (int)b.size();++j) s[i+j] += a[i] * b[j]; return s; } int k = 2, M = 4; while(M < l) M <<= 1, ++k; //setwy(k); vector<mint> s(M), t(M); for(int i = 0;i < (int)a.size();++i) s[i] = a[i]; for(int i = 0;i < (int)b.size();++i) t[i] = b[i]; fft4(s,k); fft4(t,k); for(int i = 0;i < M;++i) s[i] *= t[i]; ifft4(s,k); s.resize(l); mint invm = mint(M).inverse(); for(int i = 0;i < l;++i) s[i] *= invm; return s; } void ntt_doubling(vector<mint> &a) { int M = (int)a.size(); auto b = a; intt(b); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for(int i = 0;i < M;++i) b[i] *= r,r *= zeta; ntt(b); copy(begin(b),end(b),back_inserter(a)); } }; #line 100 "test.cpp" int main() { NTT<mint> ntt; make_fact(500); INT(n,m); VEC(int,a,n); VEC(int,b,n); vvvm cost(301,vvm(301,vm(601))); rep(i,1,301) { vm tmpa(i+1); rep(j,i+1) tmpa[j] = ncr(i,j); rep(j,1,301) { vm tmpb(j+1); rep(k,j+1) tmpb[j-k] = ncr(j,k); auto ret = ntt.multiply(tmpa,tmpb); rep(k,i+j+1) cost[i][j][300-j+k] = ret[k]; } } vvm c(m,vm(601,1)); rep(i,m) { rep(j,i,n,m) { rep(k,601) c[i][k] *= cost[a[j]][b[j]][k]; } } vm dp(180001); dp[90000] = 1; rep(i,m) { vm ndp(180001); rep(j,180001) { if(dp[j] == 0) continue; rep(k,601) { ndp[j-300+k] += dp[j] * c[i][k]; } } swap(dp,ndp); } cout << dp[90000] << '\n'; }