結果

問題 No.2181 LRM Question 2
ユーザー PachicobuePachicobue
提出日時 2023-01-06 21:55:57
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 102 ms / 2,000 ms
コード長 30,479 bytes
コンパイル時間 2,723 ms
コンパイル使用メモリ 223,012 KB
実行使用メモリ 13,696 KB
最終ジャッジ日時 2024-05-07 21:28:39
合計ジャッジ時間 4,269 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 65 ms
5,248 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 97 ms
5,376 KB
testcase_09 AC 63 ms
5,376 KB
testcase_10 AC 99 ms
5,376 KB
testcase_11 AC 102 ms
5,376 KB
testcase_12 AC 99 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 21 ms
13,696 KB
testcase_15 AC 3 ms
5,376 KB
testcase_16 AC 19 ms
11,264 KB
testcase_17 AC 3 ms
5,376 KB
testcase_18 AC 3 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 7 ms
5,760 KB
testcase_21 AC 15 ms
5,376 KB
testcase_22 AC 2 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 2 ms
5,376 KB
testcase_25 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// Nyaanさんのライブラリを使いました
// https://nyaannyaan.github.io/library/modulo/arbitrary-mod-binomial.hpp


#include <algorithm>
#include <bits/stdc++.h>
#include <vector>
#include <cassert>
#include <tuple>
#include <utility>
using i32 = int;
using u32 = unsigned int;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
using f64 = double;
using f80 = long double;
using f128 = __float128;
constexpr i32 operator"" _i32(u64 v) { return v; }
constexpr u32 operator"" _u32(u64 v) { return v; }
constexpr i64 operator"" _i64(u64 v) { return v; }
constexpr u64 operator"" _u64(u64 v) { return v; }
constexpr f64 operator"" _f64(f80 v) { return v; }
constexpr f80 operator"" _f80(f80 v) { return v; }
using Istream = std::istream;
using Ostream = std::ostream;
using Str = std::string;
template<typename T>
using Lt = std::less<T>;
template<typename T>
using Gt = std::greater<T>;
template<typename T>
using IList = std::initializer_list<T>;
template<int n>
using BSet = std::bitset<n>;
template<typename T1, typename T2>
using Pair = std::pair<T1, T2>;
template<typename... Ts>
using Tup = std::tuple<Ts...>;
template<typename T, int N>
using Arr = std::array<T, N>;
template<typename... Ts>
using Deq = std::deque<Ts...>;
template<typename... Ts>
using Set = std::set<Ts...>;
template<typename... Ts>
using MSet = std::multiset<Ts...>;
template<typename... Ts>
using USet = std::unordered_set<Ts...>;
template<typename... Ts>
using UMSet = std::unordered_multiset<Ts...>;
template<typename... Ts>
using Map = std::map<Ts...>;
template<typename... Ts>
using MMap = std::multimap<Ts...>;
template<typename... Ts>
using UMap = std::unordered_map<Ts...>;
template<typename... Ts>
using UMMap = std::unordered_multimap<Ts...>;
template<typename... Ts>
using Vec = std::vector<Ts...>;
template<typename... Ts>
using Stack = std::stack<Ts...>;
template<typename... Ts>
using Queue = std::queue<Ts...>;
template<typename T>
using MaxHeap = std::priority_queue<T>;
template<typename T>
using MinHeap = std::priority_queue<T, Vec<T>, Gt<T>>;
using NSec = std::chrono::nanoseconds;
using USec = std::chrono::microseconds;
using MSec = std::chrono::milliseconds;
using Sec = std::chrono::seconds;
constexpr bool LOCAL = false;
constexpr bool OJ = not LOCAL;
template<typename T>
static constexpr T OjLocal(T oj, T local)
{
    return LOCAL ? local : oj;
}
template<typename T>
constexpr T LIMMIN = std::numeric_limits<T>::min();
template<typename T>
constexpr T LIMMAX = std::numeric_limits<T>::max();
template<typename T>
constexpr T INF = (LIMMAX<T> - 1) / 2;
template<typename T>
constexpr T PI = T{3.141592653589793238462643383279502884};
template<typename T = u64>
constexpr T TEN(int n)
{
    return n == 0 ? T{1} : TEN<T>(n - 1) * T{10};
}
template<typename T>
constexpr Vec<T>& operator+=(Vec<T>& vs1, const Vec<T>& vs2)
{
    return vs1.insert(vs1.end(), vs2.begin(), vs2.end()), vs1;
}
template<typename T>
constexpr Vec<T> operator+(const Vec<T>& vs1, const Vec<T>& vs2)
{
    auto vs = vs1;
    vs += vs2;
    return vs;
}
template<typename T>
constexpr bool chmin(T& a, const T& b)
{
    return (a > b ? (a = b, true) : false);
}
template<typename T>
constexpr bool chmax(T& a, const T& b)
{
    return (a < b ? (a = b, true) : false);
}
template<typename T>
constexpr T floorDiv(T x, T y)
{
    assert(y != 0);
    if (y < T{}) { x = -x, y = -y; }
    return x >= T{} ? x / y : (x - y + 1) / y;
}
template<typename T>
constexpr T ceilDiv(T x, T y)
{
    assert(y != 0);
    if (y < T{}) { x = -x, y = -y; }
    return x >= T{} ? (x + y - 1) / y : x / y;
}
template<typename T, typename I>
constexpr T powerMonoid(T v, I n, const T& e)
{
    assert(n >= 0);
    T ans = e;
    for (; n > 0; n >>= 1, v *= v) {
        if (n % 2 == 1) { ans *= v; }
    }
    return ans;
}
template<typename T, typename I>
constexpr T powerInt(T v, I n)
{
    return powerMonoid(v, n, T{1});
}
template<typename Vs, typename V>
constexpr void fillAll(Vs& arr, const V& v)
{
    if constexpr (std::is_convertible<V, Vs>::value) {
        arr = v;
    } else {
        for (auto& subarr : arr) { fillAll(subarr, v); }
    }
}
template<typename Vs>
constexpr void sortAll(Vs& vs)
{
    std::sort(std::begin(vs), std::end(vs));
}
template<typename Vs, typename C>
constexpr void sortAll(Vs& vs, C comp)
{
    std::sort(std::begin(vs), std::end(vs), comp);
}
template<typename Vs>
constexpr void reverseAll(Vs& vs)
{
    std::reverse(std::begin(vs), std::end(vs));
}
template<typename V, typename Vs>
constexpr V sumAll(const Vs& vs)
{
    if constexpr (std::is_convertible<Vs, V>::value) {
        return static_cast<V>(vs);
    } else {
        V ans = 0;
        for (const auto& v : vs) { ans += sumAll<V>(v); }
        return ans;
    }
}
template<typename Vs>
constexpr int minInd(const Vs& vs)
{
    return std::min_element(std::begin(vs), std::end(vs)) - std::begin(vs);
}
template<typename Vs>
constexpr int maxInd(const Vs& vs)
{
    return std::max_element(std::begin(vs), std::end(vs)) - std::begin(vs);
}
template<typename Vs, typename V>
constexpr int lbInd(const Vs& vs, const V& v)
{
    return std::lower_bound(std::begin(vs), std::end(vs), v) - std::begin(vs);
}
template<typename Vs, typename V>
constexpr int ubInd(const Vs& vs, const V& v)
{
    return std::upper_bound(std::begin(vs), std::end(vs), v) - std::begin(vs);
}
template<typename Vs, typename V>
constexpr void plusAll(Vs& vs, const V& v)
{
    for (auto& v_ : vs) { v_ += v; }
}
template<typename T, typename F>
constexpr Vec<T> genVec(int n, F gen)
{
    Vec<T> ans;
    std::generate_n(std::back_insert_iterator(ans), n, gen);
    return ans;
}
template<typename T = int>
constexpr Vec<T> iotaVec(int n, T offset = 0)
{
    Vec<T> ans(n);
    std::iota(ans.begin(), ans.end(), offset);
    return ans;
}
Ostream& operator<<(Ostream& os, i128 v)
{
    bool minus = false;
    if (v < 0) { minus = true, v = -v; }
    Str ans;
    if (v == 0) { ans = "0"; }
    while (v) { ans.push_back('0' + v % 10), v /= 10; }
    std::reverse(ans.begin(), ans.end());
    return os << (minus ? "-" : "") << ans;
}
Ostream& operator<<(Ostream& os, u128 v)
{
    Str ans;
    if (v == 0) { ans = "0"; }
    while (v) { ans.push_back('0' + v % 10), v /= 10; }
    std::reverse(ans.begin(), ans.end());
    return os << ans;
}
constexpr int popcount(u64 v) { return v ? __builtin_popcountll(v) : 0; }
constexpr int log2p1(u64 v) { return v ? 64 - __builtin_clzll(v) : 0; }
constexpr int lsbp1(u64 v) { return __builtin_ffsll(v); }
constexpr int ceillog(u64 v) { return v ? log2p1(v - 1) : 0; }
constexpr u64 ceil2(u64 v)
{
    assert(v <= (1_u64 << 63));
    return 1_u64 << ceillog(v);
}
constexpr u64 floor2(u64 v) { return v ? (1_u64 << (log2p1(v) - 1)) : 0_u64; }
constexpr bool ispow2(u64 v) { return (v > 0) and ((v & (v - 1)) == 0); }
constexpr bool btest(u64 mask, int ind) { return (mask >> ind) & 1_u64; }
template<typename F>
struct Fix : F
{
    constexpr Fix(F&& f) : F{std::forward<F>(f)} {}
    template<typename... Args>
    constexpr auto operator()(Args&&... args) const
    {
        return F::operator()(*this, std::forward<Args>(args)...);
    }
};
class irange
{
private:
    struct itr
    {
        constexpr itr(i64 start = 0, i64 step = 1) : m_cnt{start}, m_step{step} {}
        constexpr bool operator!=(const itr& it) const { return m_cnt != it.m_cnt; }
        constexpr i64 operator*() { return m_cnt; }
        constexpr itr& operator++() { return m_cnt += m_step, *this; }
        i64 m_cnt, m_step;
    };
    i64 m_start, m_end, m_step;
public:
    static constexpr i64 cnt(i64 start, i64 end, i64 step)
    {
        if (step == 0) { return -1; }
        const i64 d = (step > 0 ? step : -step);
        const i64 l = (step > 0 ? start : end);
        const i64 r = (step > 0 ? end : start);
        i64 n = (r - l) / d + ((r - l) % d ? 1 : 0);
        if (l >= r) { n = 0; }
        return n;
    }
    constexpr irange(i64 start, i64 end, i64 step = 1)
        : m_start{start}, m_end{m_start + step * cnt(start, end, step)}, m_step{step}
    {
        assert(step != 0);
    }
    constexpr itr begin() const { return itr{m_start, m_step}; }
    constexpr itr end() const { return itr{m_end, m_step}; }
};
constexpr irange rep(i64 end) { return irange(0, end, 1); }
constexpr irange per(i64 rend) { return irange(rend - 1, -1, -1); }
class Scanner
{
public:
    Scanner(Istream& is = std::cin) : m_is{is} { m_is.tie(nullptr)->sync_with_stdio(false); }
    template<typename T>
    T val()
    {
        T v;
        return m_is >> v, v;
    }
    template<typename T>
    T val(T offset)
    {
        return val<T>() - offset;
    }
    template<typename T>
    Vec<T> vec(int n)
    {
        return genVec<T>(n, [&]() { return val<T>(); });
    }
    template<typename T>
    Vec<T> vec(int n, T offset)
    {
        return genVec<T>(n, [&]() { return val<T>(offset); });
    }
    template<typename T>
    Vec<Vec<T>> vvec(int n, int m)
    {
        return genVec<Vec<T>>(n, [&]() { return vec<T>(m); });
    }
    template<typename T>
    Vec<Vec<T>> vvec(int n, int m, const T offset)
    {
        return genVec<Vec<T>>(n, [&]() { return vec<T>(m, offset); });
    }
    template<typename... Args>
    auto tup()
    {
        return Tup<Args...>{val<Args>()...};
    }
    template<typename... Args>
    auto tup(const Args&... offsets)
    {
        return Tup<Args...>{val<Args>(offsets)...};
    }
private:
    Istream& m_is;
};
Scanner in;
class Printer
{
public:
    Printer(Ostream& os = std::cout) : m_os{os} { m_os << std::fixed << std::setprecision(15); }
    template<typename... Args>
    int operator()(const Args&... args)
    {
        return dump(args...), 0;
    }
    template<typename... Args>
    int ln(const Args&... args)
    {
        return dump(args...), m_os << '\n', 0;
    }
    template<typename... Args>
    int el(const Args&... args)
    {
        return dump(args...), m_os << std::endl, 0;
    }
    int YES(bool b = true) { return ln(b ? "YES" : "NO"); }
    int NO(bool b = true) { return YES(not b); }
    int Yes(bool b = true) { return ln(b ? "Yes" : "No"); }
    int No(bool b = true) { return Yes(not b); }
private:
    template<typename T>
    void dump(const T& v)
    {
        m_os << v;
    }
    template<typename T>
    void dump(const Vec<T>& vs)
    {
        for (int i : rep(vs.size())) { m_os << (i ? " " : ""), dump(vs[i]); }
    }
    template<typename T>
    void dump(const Vec<Vec<T>>& vss)
    {
        for (int i : rep(vss.size())) { m_os << (i ? "\n" : ""), dump(vss[i]); }
    }
    template<typename T, typename... Ts>
    int dump(const T& v, const Ts&... args)
    {
        return dump(v), m_os << ' ', dump(args...), 0;
    }
    Ostream& m_os;
};
Printer out;
template<typename T, int n, int i = 0>
auto ndVec(int const (&szs)[n], const T x = T{})
{
    if constexpr (i == n) {
        return x;
    } else {
        return std::vector(szs[i], ndVec<T, n, i + 1>(szs, x));
    }
}
template<typename T, typename F>
T binSearch(T ng, T ok, F check)
{
    while (std::abs(ok - ng) > 1) {
        const T mid = (ok + ng) / 2;
        (check(mid) ? ok : ng) = mid;
    }
    return ok;
}
template<u32 mod_, u32 root_, u32 max2p_>
class modint
{
    template<typename U = u32&>
    static U modRef()
    {
        static u32 s_mod = 0;
        return s_mod;
    }
    template<typename U = u32&>
    static U rootRef()
    {
        static u32 s_root = 0;
        return s_root;
    }
    template<typename U = u32&>
    static U max2pRef()
    {
        static u32 s_max2p = 0;
        return s_max2p;
    }
public:
    static constexpr bool isDynamic() { return (mod_ == 0); }
    template<typename U = const u32>
    static constexpr std::enable_if_t<mod_ != 0, U> mod()
    {
        return mod_;
    }
    template<typename U = const u32>
    static std::enable_if_t<mod_ == 0, U> mod()
    {
        return modRef();
    }
    template<typename U = const u32>
    static constexpr std::enable_if_t<mod_ != 0, U> root()
    {
        return root_;
    }
    template<typename U = const u32>
    static std::enable_if_t<mod_ == 0, U> root()
    {
        return rootRef();
    }
    template<typename U = const u32>
    static constexpr std::enable_if_t<mod_ != 0, U> max2p()
    {
        return max2p_;
    }
    template<typename U = const u32>
    static std::enable_if_t<mod_ == 0, U> max2p()
    {
        return max2pRef();
    }
    template<typename U = u32>
    static void setMod(std::enable_if_t<mod_ == 0, U> m)
    {
        modRef() = m;
    }
    template<typename U = u32>
    static void setRoot(std::enable_if_t<mod_ == 0, U> r)
    {
        rootRef() = r;
    }
    template<typename U = u32>
    static void setMax2p(std::enable_if_t<mod_ == 0, U> m)
    {
        max2pRef() = m;
    }
    constexpr modint() : m_val{0} {}
    constexpr modint(i64 v) : m_val{normll(v)} {}
    constexpr void setRaw(u32 v) { m_val = v; }
    constexpr modint operator-() const { return modint{0} - (*this); }
    constexpr modint& operator+=(const modint& m)
    {
        m_val = norm(m_val + m.val());
        return *this;
    }
    constexpr modint& operator-=(const modint& m)
    {
        m_val = norm(m_val + mod() - m.val());
        return *this;
    }
    constexpr modint& operator*=(const modint& m)
    {
        m_val = normll((i64)m_val * (i64)m.val() % (i64)mod());
        return *this;
    }
    constexpr modint& operator/=(const modint& m) { return *this *= m.inv(); }
    constexpr modint operator+(const modint& m) const
    {
        auto v = *this;
        return v += m;
    }
    constexpr modint operator-(const modint& m) const
    {
        auto v = *this;
        return v -= m;
    }
    constexpr modint operator*(const modint& m) const
    {
        auto v = *this;
        return v *= m;
    }
    constexpr modint operator/(const modint& m) const
    {
        auto v = *this;
        return v /= m;
    }
    constexpr bool operator==(const modint& m) const { return m_val == m.val(); }
    constexpr bool operator!=(const modint& m) const { return not(*this == m); }
    friend Istream& operator>>(Istream& is, modint& m)
    {
        i64 v;
        return is >> v, m = v, is;
    }
    friend Ostream& operator<<(Ostream& os, const modint& m) { return os << m.val(); }
    constexpr u32 val() const { return m_val; }
    template<typename I>
    constexpr modint pow(I n) const
    {
        return powerInt(*this, n);
    }
    constexpr modint inv() const { return pow(mod() - 2); }
    static modint sinv(u32 n)
    {
        static Vec<modint> is{1, 1};
        for (u32 i = (u32)is.size(); i <= n; i++) { is.push_back(-is[mod() % i] * (mod() / i)); }
        return is[n];
    }
    static modint fact(u32 n)
    {
        static Vec<modint> fs{1, 1};
        for (u32 i = (u32)fs.size(); i <= n; i++) { fs.push_back(fs.back() * i); }
        return fs[n];
    }
    static modint ifact(u32 n)
    {
        static Vec<modint> ifs{1, 1};
        for (u32 i = (u32)ifs.size(); i <= n; i++) { ifs.push_back(ifs.back() * sinv(i)); }
        return ifs[n];
    }
    static modint comb(int n, int k)
    {
        return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k) * ifact(k);
    }
private:
    static constexpr u32 norm(u32 x) { return x < mod() ? x : x - mod(); }
    static constexpr u32 normll(i64 x) { return norm(u32(x % (i64)mod() + (i64)mod())); }
    u32 m_val;
};
using modint_1000000007 = modint<1000000007, 5, 1>;
using modint_998244353 = modint<998244353, 3, 23>;
template<int id>
using modint_dynamic = modint<0, 0, id>;
template<typename T = int>
class Graph
{
    struct Edge
    {
        Edge() = default;
        Edge(int i, int t, T c) : id{i}, to{t}, cost{c} {}
        int id;
        int to;
        T cost;
        operator int() const { return to; }
    };
public:
    Graph(int n) : m_v{n}, m_edges(n) {}
    void addEdge(int u, int v, bool bi = false)
    {
        assert(0 <= u and u < m_v);
        assert(0 <= v and v < m_v);
        m_edges[u].emplace_back(m_e, v, 1);
        if (bi) { m_edges[v].emplace_back(m_e, u, 1); }
        m_e++;
    }
    void addEdge(int u, int v, const T& c, bool bi = false)
    {
        assert(0 <= u and u < m_v);
        assert(0 <= v and v < m_v);
        m_edges[u].emplace_back(m_e, v, c);
        if (bi) { m_edges[v].emplace_back(m_e, u, c); }
        m_e++;
    }
    const Vec<Edge>& operator[](const int u) const
    {
        assert(0 <= u and u < m_v);
        return m_edges[u];
    }
    Vec<Edge>& operator[](const int u)
    {
        assert(0 <= u and u < m_v);
        return m_edges[u];
    }
    int v() const { return m_v; }
    int e() const { return m_e; }
    friend Ostream& operator<<(Ostream& os, const Graph& g)
    {
        for (int u : rep(g.v())) {
            for (const auto& [id, v, c] : g[u]) {
                os << "[" << id << "]: ";
                os << u << "->" << v << "(" << c << ")\n";
            }
        }
        return os;
    }
    Vec<T> sizes(int root = 0) const
    {
        const int N = v();
        assert(0 <= root and root < N);
        Vec<T> ss(N, 1);
        Fix([&](auto dfs, int u, int p) -> void {
            for ([[maybe_unused]] const auto& [_temp_name_0, v, c] : m_edges[u]) {
                if (v == p) { continue; }
                dfs(v, u);
                ss[u] += ss[v];
            }
        })(root, -1);
        return ss;
    }
    Vec<T> depths(int root = 0) const
    {
        const int N = v();
        assert(0 <= root and root < N);
        Vec<T> ds(N, 0);
        Fix([&](auto dfs, int u, int p) -> void {
            for ([[maybe_unused]] const auto& [_temp_name_1, v, c] : m_edges[u]) {
                if (v == p) { continue; }
                ds[v] = ds[u] + c;
                dfs(v, u);
            }
        })(root, -1);
        return ds;
    }
    Vec<int> parents(int root = 0) const
    {
        const int N = v();
        assert(0 <= root and root < N);
        Vec<int> ps(N, -1);
        Fix([&](auto dfs, int u, int p) -> void {
            for ([[maybe_unused]] const auto& [_temp_name_2, v, c] : m_edges[u]) {
                if (v == p) { continue; }
                ps[v] = u;
                dfs(v, u);
            }
        })(root, -1);
        return ps;
    }
private:
    int m_v;
    int m_e = 0;
    Vec<Vec<Edge>> m_edges;
};
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m)
{
    x %= m;
    if (x < 0) x += m;
    return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett
{
    unsigned int _m;
    unsigned long long im;
    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
    // @return m
    unsigned int umod() const
    {
        return _m;
    }
    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const
    {
        // [1] m = 1
        // a = b = im = 0, so okay
        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
        unsigned long long x
            = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m)
{
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n)
{
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0)
        d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) { return false; }
    }
    return true;
}
template<int n>
constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b)
{
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};
    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;
    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m)
{
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0)
        x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) { divs[cnt++] = x; }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template<int m>
constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
namespace atcoder {
long long pow_mod(long long x, long long n, int m)
{
    assert(0 <= n && 1 <= m);
    if (m == 1) return 0;
    internal::barrett bt((unsigned int)(m));
    unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
    while (n) {
        if (n & 1) r = bt.mul(r, y);
        y = bt.mul(y, y);
        n >>= 1;
    }
    return r;
}
long long inv_mod(long long x, long long m)
{
    assert(1 <= m);
    auto z = internal::inv_gcd(x, m);
    assert(z.first == 1);
    return z.second;
}
// (rem, mod)
std::pair<long long, long long> crt(const std::vector<long long>& r,
                                    const std::vector<long long>& m)
{
    assert(r.size() == m.size());
    int n = int(r.size());
    // Contracts: 0 <= r0 < m0
    long long r0 = 0, m0 = 1;
    for (int i = 0; i < n; i++) {
        assert(1 <= m[i]);
        long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
        if (m0 < m1) {
            std::swap(r0, r1);
            std::swap(m0, m1);
        }
        if (m0 % m1 == 0) {
            if (r0 % m1 != r1) return {0, 0};
            continue;
        }
        // assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)
        // (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
        // r2 % m0 = r0
        // r2 % m1 = r1
        // -> (r0 + x*m0) % m1 = r1
        // -> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1)
        // -> x = (r1 - r0) / g * inv(u0) (mod u1)
        // im = inv(u0) (mod u1) (0 <= im < u1)
        long long g, im;
        std::tie(g, im) = internal::inv_gcd(m0, m1);
        long long u1 = (m1 / g);
        // |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
        if ((r1 - r0) % g) return {0, 0};
        // u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
        long long x = (r1 - r0) / g % u1 * im % u1;
        // |r0| + |m0 * x|
        // < m0 + m0 * (u1 - 1)
        // = m0 + m0 * m1 / g - m0
        // = lcm(m0, m1)
        r0 += x * m0;
        m0 *= u1; // -> lcm(m0, m1)
        if (r0 < 0) r0 += m0;
    }
    return {r0, m0};
}
long long floor_sum(long long n, long long m, long long a, long long b)
{
    long long ans = 0;
    if (a >= m) {
        ans += (n - 1) * n * (a / m) / 2;
        a %= m;
    }
    if (b >= m) {
        ans += n * (b / m);
        b %= m;
    }
    long long y_max = (a * n + b) / m, x_max = (y_max * m - b);
    if (y_max == 0) return ans;
    ans += (n - (x_max + a - 1) / a) * y_max;
    ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
    return ans;
}
} // namespace atcoder
using namespace std;
struct Barrett
{
    using u32 = unsigned int;
    using i64 = long long;
    using u64 = unsigned long long;
    u32 m;
    u64 im;
    Barrett() : m(), im() {}
    Barrett(int n) : m(n), im(u64(-1) / m + 1) {}
    constexpr inline i64 quo(u64 n)
    {
        u64 x = u64((__uint128_t(n) * im) >> 64);
        u32 r = n - x * m;
        return m <= r ? x - 1 : x;
    }
    constexpr inline i64 rem(u64 n)
    {
        u64 x = u64((__uint128_t(n) * im) >> 64);
        u32 r = n - x * m;
        return m <= r ? r + m : r;
    }
    constexpr inline pair<i64, int> quorem(u64 n)
    {
        u64 x = u64((__uint128_t(n) * im) >> 64);
        u32 r = n - x * m;
        if (m <= r) return {x - 1, r + m};
        return {x, r};
    }
    constexpr inline i64 pow(u64 n, i64 p)
    {
        u32 a = rem(n), r = m == 1 ? 0 : 1;
        while (p) {
            if (p & 1) r = rem(u64(r) * a);
            a = rem(u64(a) * a);
            p >>= 1;
        }
        return r;
    }
};
using namespace std;
struct prime_power_binomial
{
    int p, q, M;
    vector<int> fac, ifac, inv;
    int delta;
    Barrett bm, bp;
    prime_power_binomial(int _p, int _q) : p(_p), q(_q)
    {
        assert(1 < p && p <= ((1LL << 30) - 1));
        assert(_q > 0);
        long long m = 1;
        while (_q--) {
            m *= p;
            assert(m <= ((1LL << 30) - 1));
        }
        M = m;
        bm = Barrett(M), bp = Barrett(p);
        enumerate();
        delta = (p == 2 && q >= 3) ? 1 : M - 1;
    }
    void enumerate()
    {
        int MX = min<int>(M, 20000000 + 10);
        fac.resize(MX);
        ifac.resize(MX);
        inv.resize(MX);
        fac[0] = ifac[0] = inv[0] = 1;
        fac[1] = ifac[1] = inv[1] = 1;
        for (int i = 2; i < MX; i++) {
            if (i % p == 0) {
                fac[i] = fac[i - 1];
                fac[i + 1] = bm.rem(1LL * fac[i - 1] * (i + 1));
                i++;
            } else {
                fac[i] = bm.rem(1LL * fac[i - 1] * i);
            }
        }
        ifac[MX - 1] = bm.pow(fac[MX - 1], M / p * (p - 1) - 1);
        for (int i = MX - 2; i > 1; --i) {
            if (i % p == 0) {
                ifac[i] = bm.rem(1LL * ifac[i + 1] * (i + 1));
                ifac[i - 1] = ifac[i];
                i--;
            } else {
                ifac[i] = bm.rem(1LL * ifac[i + 1] * (i + 1));
            }
        }
    }
    long long Lucas(long long n, long long m)
    {
        int res = 1;
        while (n) {
            int n0, m0;
            tie(n, n0) = bp.quorem(n);
            tie(m, m0) = bp.quorem(m);
            if (n0 < m0) return 0;
            res = bm.rem(1LL * res * fac[n0]);
            int buf = bm.rem(1LL * ifac[n0 - m0] * ifac[m0]);
            res = bm.rem(1LL * res * buf);
        }
        return res;
    }
    long long C(long long n, long long m)
    {
        if (n < m || n < 0 || m < 0) return 0;
        if (q == 1) return Lucas(n, m);
        long long r = n - m;
        int e0 = 0, eq = 0, i = 0;
        int res = 1;
        while (n) {
            res = bm.rem(1LL * res * fac[bm.rem(n)]);
            res = bm.rem(1LL * res * ifac[bm.rem(m)]);
            res = bm.rem(1LL * res * ifac[bm.rem(r)]);
            n = bp.quo(n);
            m = bp.quo(m);
            r = bp.quo(r);
            int eps = n - m - r;
            e0 += eps;
            if (e0 >= q) return 0;
            if (++i >= q) eq += eps;
        }
        if (eq & 1) res = bm.rem(1LL * res * delta);
        res = bm.rem(1LL * res * bm.pow(p, e0));
        return res;
    }
};
// constraints:
// (M <= 1e7 and max(N) <= 1e18) or (M < 2^30 and max(N) <= 2e7)
struct arbitrary_mod_binomial
{
    int mod;
    vector<int> M;
    vector<prime_power_binomial> cs;
    arbitrary_mod_binomial(long long md) : mod(md)
    {
        assert(1 <= md);
        assert(md <= ((1LL << 30) - 1));
        for (int i = 2; i * i <= md; i++) {
            if (md % i == 0) {
                int j = 0, k = 1;
                while (md % i == 0)
                    md /= i, j++, k *= i;
                M.push_back(k);
                cs.emplace_back(i, j);
                assert(M.back() == cs.back().M);
            }
        }
        if (md != 1) {
            M.push_back(md);
            cs.emplace_back(md, 1);
        }
        assert(M.size() == cs.size());
    }
    long long C(long long n, long long m)
    {
        if (mod == 1) return 0;
        vector<long long> rem, d;
        for (int i = 0; i < (int)cs.size(); i++) {
            rem.push_back(cs[i].C(n, m));
            d.push_back(M[i]);
        }
        return atcoder::crt(rem, d).first;
    }
};
/**
 * @brief 任意mod二項係数
 * @docs docs/modulo/arbitrary-mod-binomial.md
 */
int main()
{
    const auto [L, R, M] = in.tup<i64, i64, i64>();
    auto mod = arbitrary_mod_binomial(M);
    i64 ans = 0;
    for (i64 x : irange(L, R + 1)) {
        (ans += (mod.C(2 * x, x) + M - 2) % M) %= M;
    }
    out.ln(ans);
    return 0;
}
0