結果

問題 No.2181 LRM Question 2
ユーザー tassei903tassei903
提出日時 2023-01-06 23:31:58
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 765 ms / 2,000 ms
コード長 2,992 bytes
コンパイル時間 328 ms
コンパイル使用メモリ 82,304 KB
実行使用メモリ 86,784 KB
最終ジャッジ日時 2024-11-30 20:28:09
合計ジャッジ時間 6,320 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
input = lambda :sys.stdin.readline()[:-1]
ni = lambda :int(input())
na = lambda :list(map(int,input().split()))
yes = lambda :print("yes");Yes = lambda :print("Yes");YES = lambda : print("YES")
no = lambda :print("no");No = lambda :print("No");NO = lambda : print("NO")
#######################################################################


class BinomialCoefficient:
    def __init__(self, m):
        self.MOD = m
        self.factorization = self._factorize(m)
        self.facs = []
        self.invs = []
        self.coeffs = []
        self.pows = []
        for p, pe in self.factorization:
            fac = [1]*pe
            for i in range(1, pe):
                fac[i] = fac[i-1]*(i if i % p else 1) % pe
            inv = [1]*pe
            inv[-1] = fac[-1]
            for i in range(1, pe)[::-1]:
                inv[i-1] = inv[i]*(i if i % p else 1) % pe
            self.facs.append(fac)
            self.invs.append(inv)
            # coeffs
            c = self._modinv(m // pe, pe)
            self.coeffs.append(m//pe*c % m)
            # pows
            powp = [1]
            while powp[-1]*p != pe:
                powp.append(powp[-1]*p)
            self.pows.append(powp)

    def __call__(self, n, k):
        if k < 0 or k > n:
            return 0
        if k == 0 or k == n:
            return 1 % self.MOD
        res = 0
        for i, (p, pe) in enumerate(self.factorization):
            res += self._choose_pe(n, k, p, pe,
                                   self.facs[i], self.invs[i], self.pows[i]) * self.coeffs[i]
            res %= self.MOD
        return res

    def _E(self, n, k, r, p):
        res = 0
        while n:
            n //= p
            k //= p
            r //= p
            res += n - k - r
        return res

    def _choose_pe(self, n, k, p, pe, fac, inv, powp):
        r = n-k
        e0 = self._E(n, k, r, p)
        if e0 >= len(powp):
            return 0
        res = powp[e0]
        if (p != 2 or pe == 4) and self._E(n//(pe//p), k//(pe//p), r//(pe//p), p) % 2:
            res = pe-res
        while n:
            res = res * fac[n % pe] % pe * inv[k % pe] % pe * inv[r % pe] % pe
            n //= p
            k //= p
            r //= p
        return res

    def _factorize(self, N):
        factorization = []
        for i in range(2, N+1):
            if i*i > N:
                break
            if N % i:
                continue
            c = 0
            while N % i == 0:
                N //= i
                c += 1
            factorization.append((i, i**c))
        if N != 1:
            factorization.append((N, N))
        return factorization

    def _modinv(self, a, MOD):
        r0, r1, s0, s1 = a, MOD, 1, 0
        while r1:
            r0, r1, s0, s1 = r1, r0 % r1, s1, s0-r0//r1*s1
        return s0 % MOD

l, r, m = na()
from math import *
ans = -(r-l+1)*2
ans %= m
c = BinomialCoefficient(m)
for i in range(l, r+1):
    ans += c(2*i,i)
    ans %= m


print(ans)
0