結果
| 問題 |
No.2181 LRM Question 2
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-01-06 23:31:58 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 765 ms / 2,000 ms |
| コード長 | 2,992 bytes |
| コンパイル時間 | 328 ms |
| コンパイル使用メモリ | 82,304 KB |
| 実行使用メモリ | 86,784 KB |
| 最終ジャッジ日時 | 2024-11-30 20:28:09 |
| 合計ジャッジ時間 | 6,320 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 23 |
ソースコード
import sys
input = lambda :sys.stdin.readline()[:-1]
ni = lambda :int(input())
na = lambda :list(map(int,input().split()))
yes = lambda :print("yes");Yes = lambda :print("Yes");YES = lambda : print("YES")
no = lambda :print("no");No = lambda :print("No");NO = lambda : print("NO")
#######################################################################
class BinomialCoefficient:
def __init__(self, m):
self.MOD = m
self.factorization = self._factorize(m)
self.facs = []
self.invs = []
self.coeffs = []
self.pows = []
for p, pe in self.factorization:
fac = [1]*pe
for i in range(1, pe):
fac[i] = fac[i-1]*(i if i % p else 1) % pe
inv = [1]*pe
inv[-1] = fac[-1]
for i in range(1, pe)[::-1]:
inv[i-1] = inv[i]*(i if i % p else 1) % pe
self.facs.append(fac)
self.invs.append(inv)
# coeffs
c = self._modinv(m // pe, pe)
self.coeffs.append(m//pe*c % m)
# pows
powp = [1]
while powp[-1]*p != pe:
powp.append(powp[-1]*p)
self.pows.append(powp)
def __call__(self, n, k):
if k < 0 or k > n:
return 0
if k == 0 or k == n:
return 1 % self.MOD
res = 0
for i, (p, pe) in enumerate(self.factorization):
res += self._choose_pe(n, k, p, pe,
self.facs[i], self.invs[i], self.pows[i]) * self.coeffs[i]
res %= self.MOD
return res
def _E(self, n, k, r, p):
res = 0
while n:
n //= p
k //= p
r //= p
res += n - k - r
return res
def _choose_pe(self, n, k, p, pe, fac, inv, powp):
r = n-k
e0 = self._E(n, k, r, p)
if e0 >= len(powp):
return 0
res = powp[e0]
if (p != 2 or pe == 4) and self._E(n//(pe//p), k//(pe//p), r//(pe//p), p) % 2:
res = pe-res
while n:
res = res * fac[n % pe] % pe * inv[k % pe] % pe * inv[r % pe] % pe
n //= p
k //= p
r //= p
return res
def _factorize(self, N):
factorization = []
for i in range(2, N+1):
if i*i > N:
break
if N % i:
continue
c = 0
while N % i == 0:
N //= i
c += 1
factorization.append((i, i**c))
if N != 1:
factorization.append((N, N))
return factorization
def _modinv(self, a, MOD):
r0, r1, s0, s1 = a, MOD, 1, 0
while r1:
r0, r1, s0, s1 = r1, r0 % r1, s1, s0-r0//r1*s1
return s0 % MOD
l, r, m = na()
from math import *
ans = -(r-l+1)*2
ans %= m
c = BinomialCoefficient(m)
for i in range(l, r+1):
ans += c(2*i,i)
ans %= m
print(ans)