結果
| 問題 |
No.2181 LRM Question 2
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-01-07 01:27:56 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 9,734 bytes |
| コンパイル時間 | 2,080 ms |
| コンパイル使用メモリ | 209,372 KB |
| 最終ジャッジ日時 | 2025-02-10 00:46:34 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 19 WA * 1 TLE * 3 |
ソースコード
#line 1 "A.cpp"
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));
#define endl "\n"
#define spa ' '
#define len(A) A.size()
#define all(A) begin(A), end(A)
#define fori1(a) for(ll _ = 0; _ < (a); _++)
#define fori2(i, a) for(ll i = 0; i < (a); i++)
#define fori3(i, a, b) for(ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for(ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)
#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);
const ll MOD1 = 1000000007;
const ll MOD9 = 998244353;
template<class T> auto min(const T& a){
return *min_element(all(a));
}
template<class T> auto max(const T& a){
return *max_element(all(a));
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
void print(){cout << endl;}
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
cout << head;
if (sizeof...(Tail)) cout << spa;
print(forward<Tail>(tail)...);
}
template<typename T>
void print(vector<T> &A){
int n = A.size();
for(int i = 0; i < n; i++){
cout << A[i];
if(i == n - 1) cout << endl;
else cout << spa;
}
}
template<typename T>
void print(vector<vector<T>> &A){
for(auto &row: A) print(row);
}
template<typename T, typename S>
void print(pair<T, S> &A){
cout << A.first << spa << A.second << endl;
}
template<typename T, typename S>
void print(vector<pair<T, S>> &A){
for(auto &row: A) print(row);
}
template<typename T, typename S>
void prisep(vector<T> &A, S sep){
int n = A.size();
for(int i = 0; i < n; i++){
cout << A[i];
if(i == n - 1) cout << endl;
else cout << sep;
}
}
template<typename T, typename S>
void priend(T A, S end){
cout << A << end;
}
template<typename T>
void priend(T A){
priend(A, spa);
}
template<class... T>
void inp(T&... a){
(cin >> ... >> a);
}
template<typename T>
void inp(vector<T> &A){
for(auto &a:A) cin >> a;
}
template<typename T>
void inp(vector<vector<T>> &A){
for(auto &row:A) inp(row);
}
template<typename T, typename S>
void inp(pair<T, S> &A){
inp(A.first, A.second);
}
template<typename T, typename S>
void inp(vector<pair<T, S>> &A){
for(auto &row: A) inp(row.first, row.second);
}
template<typename T>
T sum(vector<T> &A){
T tot = 0;
for(auto a:A) tot += a;
return tot;
}
#line 2 "Library/C++/math/pollard_rho.hpp"
#line 2 "Library/C++/math/modpow.hpp"
template<typename T>
T modpow(T a, long long b, T MOD){
T ret = 1;
while(b > 0){
if(b & 1){
ret *= a;
ret %= MOD;
}
a *= a;
a %= MOD;
b >>= 1;
}
return ret;
}
#line 3 "Library/C++/math/millerRabin.hpp"
bool isPrime(long long n){
if(n <= 1) return false;
else if(n == 2) return true;
else if(n % 2 == 0) return false;
long long A[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
long long s = 0;
long long d = n - 1;
while(d % 2 == 0){
d /= 2;
s++;
}
for(auto a: A){
if(a % n == 0) return true;
long long x = modpow<__int128_t>(a, d, n);
if(x != 1){
bool ng = true;
for(int i = 0; i < s; i++){
if(x == n - 1){
ng = false;
break;
};
x = __int128_t(x) * x % n;
}
if(ng) return false;
}
}
return true;
}
#line 4 "Library/C++/math/pollard_rho.hpp"
long long pollard(long long N) {
if (N % 2 == 0) return 2;
if (isPrime(N)) return N;
auto f = [&](long long x) -> long long {
return (__int128_t(x) * x + 1) % N;
};
long long step = 0;
while (true) {
++step;
long long x = step, y = f(x);
while (true) {
long long p = gcd(y - x + N, N);
if (p == 0 || p == N) break;
if (p != 1) return p;
x = f(x);
y = f(f(y));
}
}
}
vector<long long> primefact(long long N) {
if (N == 1) return {};
long long p = pollard(N);
if (p == N) return {p};
vector<long long> left = primefact(p);
vector<long long> right = primefact(N / p);
left.insert(left.end(), right.begin(), right.end());
sort(left.begin(), left.end());
return left;
}
#line 2 "Library/C++/math/modinv.hpp"
template<typename T>
T modinv(T a, T MOD){
T b = MOD;
T u = 1;
T v = 0;
while(b > 0){
T t = a / b;
a -= t * b;
u -= t * v;
swap(a, b);
swap(u, v);
}
if(a != 1) return -1;
if(u < 0) u += MOD;
return u;
}
#line 2 "Library/C++/math/ext_gcd.hpp"
template<typename T>
vector<T> ext_gcd(T a, T b){
// return (x, y, gcd(a, b)) s.t. ax + by = gcd(a, b)
if(a == 0) return {0, 1, b};
else{
auto tmp = ext_gcd(b % a, a);
T x = tmp[0];
T y = tmp[1];
T g = tmp[2];
return {y - b / a * x, x, g};
}
}
#line 3 "Library/C++/math/Garner.hpp"
pair<long long, long long> Garner(vector<long long> &R, vector<long long> &M){
int n = R.size();
long long r = 0;
long long m = 1;
for(int i = 0; i < n; i++){
long long ri = R[i];
long long mi = M[i];
if(ri < 0 || mi <= ri){
ri = (ri % mi + mi) % mi;
}
if(m < mi){
swap(m, mi);
swap(r, ri);
}
if(m % mi == 0){
if(r % mi != ri) return {0, 0};
continue;
}
long long g, im;
auto res = ext_gcd(m, mi);
g = res[2];
im = res[0];
// print(m, mi, im, g);
if(im < 0) im += mi;
long long ui = mi / g;
if((ri - r) % g != 0) return {0, 0};
long long x = (ri - r) / g % ui * im % ui;
r += x * m;
m *= ui;
if (r < 0) r += m;
}
return {r, m};
}
#line 6 "Library/C++/math/arbitrary_mod_nCk.hpp"
struct prime_power_mod_nCk{
int p, e, m;
vector<long long> fact, invfact;
prime_power_mod_nCk(int p, int e): p(p), e(e){
m = 1;
for(int i = 0; i < e; i++) m *= p;
fact.resize(m + 1);
invfact.resize(m + 1);
fact[0] = 1;
invfact[0] = 1;
for(long long i = 1; i <= m; i++){
if(i % p == 0) fact[i] = fact[i - 1];
else fact[i] = fact[i - 1] * i % m;
invfact[i] = modinv<long long>(fact[i], m);
}
}
long long C(long long n, long long k){
long long z = n - k;
long long e0 = 0;
long long u = n / p;
while(u > 0){
e0 += u;
u /= p;
}
u = k / p;
while(u > 0){
e0 -= u;
u /= p;
}
u = z / p;
while(u > 0){
e0 -= u;
u /= p;
}
long long em = 0;
u = n / m;
while(u > 0){
em += u;
u /= p;
}
u = k / m;
while(u > 0){
em -= u;
u /= p;
}
u = z / m;
while(u > 0){
em -= u;
u /= p;
}
long long ret = 1;
while(n > 0){
ret *= (fact[n % m] * invfact[k % m] % m) * invfact[z % m] % m;
ret %= m;
n /= p;
k /= p;
z /= p;
}
ret *= modpow(p, e0, m);
ret %= m;
if(!(p == 2 && e >= 3) && (em & 1)){
ret = (m - ret) % m;
}
return ret;
}
};
struct arbitrary_mod_nCk{
int MOD;
vector<long long> M;
vector<prime_power_mod_nCk> prime_nCk;
arbitrary_mod_nCk(int MOD) : MOD(MOD){
if(MOD == 1) return;
auto primes = primefact(MOD);
int row = 0;
int bef = primes[0];
primes.push_back(-1);
for(auto p:primes){
if(p == bef) row++;
else{
int x = 1;
for(int i = 0; i < row; i++){
x *= bef;
}
M.push_back(x);
prime_nCk.push_back(prime_power_mod_nCk(bef, row));
bef = p;
row = 1;
}
}
}
long long nCk(long long n, long long k){
if(MOD == 1) return 0;
vector<long long> R(M.size());
for(int i = 0; i < M.size(); i++){
R[i] = prime_nCk[i].C(n, k);
}
return Garner(R, M).first;
}
};
#line 125 "A.cpp"
void solve(){
LL(L, R, M);
arbitrary_mod_nCk C(M);
ll ans = 0;
fori(i, L, R + 1){
ans += C.nCk(2 * i, i) - 2;
ans %= M;
}
if(ans < 0) ans += M;
print(ans);
}
int main(){
cin.tie(0)->sync_with_stdio(0);
int t;
t = 1;
// cin >> t;
while(t--) solve();
return 0;
}