結果

問題 No.2181 LRM Question 2
ユーザー 👑 rin204rin204
提出日時 2023-01-07 01:27:56
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 9,734 bytes
コンパイル時間 2,529 ms
コンパイル使用メモリ 216,560 KB
実行使用メモリ 17,280 KB
最終ジャッジ日時 2024-11-30 22:20:26
合計ジャッジ時間 16,455 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 1,645 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 TLE -
testcase_09 AC 428 ms
5,248 KB
testcase_10 TLE -
testcase_11 TLE -
testcase_12 TLE -
testcase_13 AC 3 ms
5,248 KB
testcase_14 AC 218 ms
17,280 KB
testcase_15 AC 10 ms
5,248 KB
testcase_16 WA -
testcase_17 AC 29 ms
5,248 KB
testcase_18 AC 9 ms
5,248 KB
testcase_19 AC 7 ms
5,248 KB
testcase_20 AC 56 ms
6,820 KB
testcase_21 AC 204 ms
5,248 KB
testcase_22 AC 14 ms
5,248 KB
testcase_23 AC 2 ms
5,248 KB
testcase_24 AC 2 ms
5,248 KB
testcase_25 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "A.cpp"
#include<bits/stdc++.h>
using namespace std;

using ll = long long;
using ull = unsigned long long;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));

#define endl "\n"
#define spa ' '
#define len(A) A.size()
#define all(A) begin(A), end(A)

#define fori1(a) for(ll _ = 0; _ < (a); _++)
#define fori2(i, a) for(ll i = 0; i < (a); i++)
#define fori3(i, a, b) for(ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for(ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)

#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);

const ll MOD1 = 1000000007;
const ll MOD9 = 998244353;

template<class T> auto min(const T& a){
    return *min_element(all(a));
}
template<class T> auto max(const T& a){
    return *max_element(all(a));
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

void print(){cout << endl;}
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
    cout << head;
    if (sizeof...(Tail)) cout << spa;
    print(forward<Tail>(tail)...);
}
template<typename T>
void print(vector<T> &A){
    int n = A.size();
    for(int i = 0; i < n; i++){
        cout << A[i];
        if(i == n - 1) cout << endl;
        else cout << spa;
    }
}
template<typename T>
void print(vector<vector<T>> &A){
    for(auto &row: A) print(row);
}
template<typename T, typename S>
void print(pair<T, S> &A){
    cout << A.first << spa << A.second << endl;
}
template<typename T, typename S>
void print(vector<pair<T, S>> &A){
    for(auto &row: A) print(row);
}
template<typename T, typename S>
void prisep(vector<T> &A, S sep){
    int n = A.size();
    for(int i = 0; i < n; i++){
        cout << A[i];
        if(i == n - 1) cout << endl;
        else cout << sep;
    }
}
template<typename T, typename S>
void priend(T A, S end){
    cout << A << end;
}
template<typename T>
void priend(T A){
    priend(A, spa);
}
template<class... T>
void inp(T&... a){
    (cin >> ... >> a);
}
template<typename T>
void inp(vector<T> &A){
    for(auto &a:A) cin >> a;
}
template<typename T>
void inp(vector<vector<T>> &A){
    for(auto &row:A) inp(row);
}
template<typename T, typename S>
void inp(pair<T, S> &A){
    inp(A.first, A.second);
}
template<typename T, typename S>
void inp(vector<pair<T, S>> &A){
    for(auto &row: A) inp(row.first, row.second);
}

template<typename T>
T sum(vector<T> &A){
    T tot = 0;
    for(auto a:A) tot += a;
    return tot;
}

#line 2 "Library/C++/math/pollard_rho.hpp"

#line 2 "Library/C++/math/modpow.hpp"

template<typename T>
T modpow(T a, long long b, T MOD){
    T ret = 1;
    while(b > 0){
        if(b & 1){
            ret *= a;
            ret %= MOD;
        }
        a *= a;
        a %= MOD;
        b >>= 1;
    }
    return ret;
}
#line 3 "Library/C++/math/millerRabin.hpp"

bool isPrime(long long n){
    if(n <= 1) return false;
    else if(n == 2) return true;
    else if(n % 2 == 0) return false;

    long long A[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
    long long s = 0;
    long long d = n - 1;
    while(d % 2 == 0){
        d /= 2;
        s++;
    }

    for(auto a: A){
        if(a % n == 0) return true;
        long long x = modpow<__int128_t>(a, d, n);
        if(x != 1){
            bool ng = true;
            for(int i = 0; i < s; i++){
                if(x == n - 1){
                    ng = false;
                    break;
                };
                x = __int128_t(x) * x % n;
            }
            if(ng) return false;
        }
    }
    return true;
}
#line 4 "Library/C++/math/pollard_rho.hpp"

long long pollard(long long N) {
    if (N % 2 == 0) return 2;
    if (isPrime(N)) return N;

    auto f = [&](long long x) -> long long {
        return (__int128_t(x) * x + 1) % N;
    };
    long long step = 0;
    while (true) {
        ++step;
        long long x = step, y = f(x);
        while (true) {
            long long p = gcd(y - x + N, N);
            if (p == 0 || p == N) break;
            if (p != 1) return p;
            x = f(x);
            y = f(f(y));
        }
    }
}

vector<long long> primefact(long long N) {
    if (N == 1) return {};
    long long p = pollard(N);
    if (p == N) return {p};
    vector<long long> left = primefact(p);
    vector<long long> right = primefact(N / p);
    left.insert(left.end(), right.begin(), right.end());
    sort(left.begin(), left.end());
    return left;
}
#line 2 "Library/C++/math/modinv.hpp"

template<typename T>
T modinv(T a, T MOD){
    T b = MOD;
    T u = 1;
    T v = 0;
    while(b > 0){
        T t = a / b;
        a -= t * b;
        u -= t * v;
        swap(a, b);
        swap(u, v);
    }
    if(a != 1) return -1;
    if(u < 0) u += MOD;
    return u;
}
#line 2 "Library/C++/math/ext_gcd.hpp"

template<typename T>
vector<T> ext_gcd(T a, T b){
    //  return (x, y, gcd(a, b)) s.t. ax + by = gcd(a, b)
    if(a == 0) return {0, 1, b};
    else{
        auto tmp = ext_gcd(b % a, a);
        T x = tmp[0];
        T y = tmp[1];
        T g = tmp[2];
        return {y - b / a * x, x, g};
    }
}
#line 3 "Library/C++/math/Garner.hpp"


pair<long long, long long> Garner(vector<long long> &R, vector<long long> &M){
    int n = R.size();
    long long r = 0;
    long long m = 1;
    for(int i = 0; i < n; i++){
        long long ri = R[i];
        long long mi = M[i];
        if(ri < 0 || mi <= ri){
            ri = (ri % mi + mi) % mi;
        }
        if(m < mi){
            swap(m, mi);
            swap(r, ri);
        }
        
        if(m % mi == 0){
            if(r % mi != ri) return {0, 0};
            continue;
        }

        long long g, im;
        auto res = ext_gcd(m, mi);
        g = res[2];
        im = res[0];
        // print(m, mi, im, g);
        if(im < 0) im += mi;

        long long ui = mi / g;
        if((ri - r) % g != 0) return {0, 0};

        long long x = (ri - r) / g % ui * im % ui;
        r += x * m;
        m *= ui;
        if (r < 0) r += m;
    }
    return {r, m};
}
#line 6 "Library/C++/math/arbitrary_mod_nCk.hpp"

struct prime_power_mod_nCk{
    int p, e, m;
    vector<long long> fact, invfact;
    prime_power_mod_nCk(int p, int e): p(p), e(e){
        m = 1;
        for(int i = 0; i < e; i++) m *= p;
        fact.resize(m + 1);
        invfact.resize(m + 1);
        fact[0] = 1;
        invfact[0] = 1;
        for(long long i = 1; i <= m; i++){
            if(i % p == 0) fact[i] = fact[i - 1];
            else fact[i] = fact[i - 1] * i % m;
            invfact[i] = modinv<long long>(fact[i], m);
        }
    }

    long long C(long long n, long long k){
        long long z = n - k;
        long long e0 = 0;
        long long u = n / p;
        while(u > 0){
            e0 += u;
            u /= p;
        }
        u = k / p;
        while(u > 0){
            e0 -= u;
            u /= p;
        }
        u = z / p;
        while(u > 0){
            e0 -= u;
            u /= p;
        }

        long long em = 0;
        u = n / m;
        while(u > 0){
            em += u;
            u /= p;
        }
        u = k / m;
        while(u > 0){
            em -= u;
            u /= p;
        }
        u = z / m;
        while(u > 0){
            em -= u;
            u /= p;
        }

        long long ret = 1;
        while(n > 0){
            ret *= (fact[n % m] * invfact[k % m] % m) * invfact[z % m] % m;
            ret %= m;
            n /= p;
            k /= p;
            z /= p;
        }
        ret *= modpow(p, e0, m);
        ret %= m;
        if(!(p == 2 && e >= 3) && (em & 1)){
            ret = (m - ret) % m;
        }
        return ret;
    }
};

struct arbitrary_mod_nCk{
    int MOD;
    vector<long long> M;
    vector<prime_power_mod_nCk> prime_nCk;
    arbitrary_mod_nCk(int MOD) : MOD(MOD){
        if(MOD == 1) return;
        auto primes = primefact(MOD);
        int row = 0;
        int bef = primes[0];
        primes.push_back(-1);
        for(auto p:primes){
            if(p == bef) row++;
            else{
                int x = 1;
                for(int i = 0; i < row; i++){
                    x *= bef;
                }
                M.push_back(x);
                prime_nCk.push_back(prime_power_mod_nCk(bef, row));
                bef = p;
                row = 1;
            }
        }
    }

    long long nCk(long long n, long long k){
        if(MOD == 1) return 0;
        vector<long long> R(M.size());
        for(int i = 0; i < M.size(); i++){
            R[i] = prime_nCk[i].C(n, k);
        }
        return Garner(R, M).first;
    }
};
#line 125 "A.cpp"

void solve(){
    LL(L, R, M);
    arbitrary_mod_nCk C(M);
    ll ans = 0;
    fori(i, L, R + 1){
        ans += C.nCk(2 * i, i) - 2;
        ans %= M;
    }
    if(ans < 0) ans += M;
    print(ans);
}

int main(){
    cin.tie(0)->sync_with_stdio(0);
    int t;
    t = 1;
    // cin >> t;
    while(t--) solve();
    return 0;
}
0