結果
問題 | No.2181 LRM Question 2 |
ユーザー | katonyonko |
提出日時 | 2023-01-07 01:37:19 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,016 ms / 2,000 ms |
コード長 | 3,478 bytes |
コンパイル時間 | 660 ms |
コンパイル使用メモリ | 82,384 KB |
実行使用メモリ | 87,400 KB |
最終ジャッジ日時 | 2024-05-08 01:12:27 |
合計ジャッジ時間 | 7,481 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 37 ms
52,480 KB |
testcase_01 | AC | 36 ms
52,864 KB |
testcase_02 | AC | 624 ms
76,948 KB |
testcase_03 | AC | 36 ms
52,864 KB |
testcase_04 | AC | 42 ms
60,416 KB |
testcase_05 | AC | 35 ms
52,992 KB |
testcase_06 | AC | 42 ms
59,904 KB |
testcase_07 | AC | 35 ms
52,736 KB |
testcase_08 | AC | 757 ms
76,288 KB |
testcase_09 | AC | 397 ms
77,668 KB |
testcase_10 | AC | 954 ms
76,288 KB |
testcase_11 | AC | 989 ms
76,544 KB |
testcase_12 | AC | 1,016 ms
76,652 KB |
testcase_13 | AC | 51 ms
64,640 KB |
testcase_14 | AC | 108 ms
78,592 KB |
testcase_15 | AC | 45 ms
60,544 KB |
testcase_16 | AC | 121 ms
87,400 KB |
testcase_17 | AC | 80 ms
75,904 KB |
testcase_18 | AC | 91 ms
76,408 KB |
testcase_19 | AC | 67 ms
71,808 KB |
testcase_20 | AC | 84 ms
73,984 KB |
testcase_21 | AC | 149 ms
77,028 KB |
testcase_22 | AC | 87 ms
76,544 KB |
testcase_23 | AC | 38 ms
53,120 KB |
testcase_24 | AC | 36 ms
52,864 KB |
testcase_25 | AC | 38 ms
52,608 KB |
ソースコード
class BinomialCoefficient: def __init__(self, mod): self.mod = mod self.prime = self.prime_factorize(mod) self.facs = [] self.invs = [] self.pows = [] self.factinvs = [] for p, c in self.prime: pc = pow(p, c) fac = [1] * pc inv = [1] * pc for i in range(1, pc): k = i if(i % p == 0): k = 1 fac[i] = fac[i - 1] * k % pc inv[-1] = fac[-1] for i in range(1, pc)[::-1]: k = i if(i % p == 0): k = 1 inv[i - 1] = inv[i] * k % pc self.facs.append(fac) self.invs.append(inv) pw = [1] while(pw[-1] * p != pc): pw.append(pw[-1] * p) self.pows.append(pw) def prime_factorize(self, n): prime = [] f = 2 while(f * f <= n): if(n % f == 0): n //= f cnt = 1 while(n % f == 0): n //= f cnt += 1 prime.append((f, cnt)) f += 1 if(n != 1): prime.append((n, 1)) return prime def crt(self, rm): r0 = 0 m0 = 1 for a, b in rm: r1 = a % b m1 = b if(m0 < m1): r0, r1, m0, m1 = r1, r0, m1, m0 if(m0 % m1 == 0): if(r0 % m1 != r1): return 0, 0 continue g, im = self.inv_gcd(m0, m1) u1 = m1 // g if((r1 - r0) % g): return 0, 0 x = (r1 - r0) // g * im % u1 r0 += x * m0 m0 *= u1 if(r0 < 0): r0 += m0 return r0, m0 def inv_gcd(self, n, m): n %= m if(n == 0): return m, 0 s, t, m0, m1 = m, n, 0, 1 while(t): u = s // t s -= t * u m0 -= m1 * u m0, m1, s, t = m1, m0, t, s if(m0 < 0): m0 += m // s return s, m0 def inv_mod(self, n, m): g, im = self.inv_gcd(n, m) return im def calc_e(self, n, k, r, p): e = 0 while(n): n //= p e += n while(k): k //= p e -= k while(r): r //= p e -= r return e def lucas(self, n, k, p, c, i): pw = self.pows[i] fac = self.facs[i] inv = self.invs[i] r = n - k pc = pow(p, c) e = self.calc_e(n, k, r, p) if(e >= len(pw)): return 0 ret = pw[e] if((p != 2 or c < 3) and (self.calc_e(n // pw[-1], k // pw[-1], r // pw[-1], p) & 1)): ret *= -1 while(n): ret *= fac[n % pc] * inv[k % pc] * inv[r % pc] % pc ret %= pc n //= p k //= p r //= p return ret def __call__(self, n, k): if(k < 0 or k > n): return 0 if(k == 0 or k == n): return 1 rm = [(self.lucas(n, k, p, c, i), pow(p, c)) for i, (p, c) in enumerate(self.prime)] ret, _ = self.crt(rm) return ret L,R,M=map(int,input().split()) ans=0 BC=BinomialCoefficient(M) for i in range(L,R+1): ans+=BC(2*i,i)-2 ans%=M print(ans)