結果
問題 | No.2188 整数列コイントスゲーム |
ユーザー | hitonanode |
提出日時 | 2023-01-13 21:48:59 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 31,962 bytes |
コンパイル時間 | 3,871 ms |
コンパイル使用メモリ | 249,500 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-06 22:27:56 |
合計ジャッジ時間 | 5,334 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 1 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 1 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 1 ms
5,376 KB |
testcase_26 | AC | 1 ms
5,376 KB |
testcase_27 | AC | 1 ms
5,376 KB |
testcase_28 | AC | 1 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 1 ms
5,376 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 1 ms
5,376 KB |
testcase_35 | AC | 2 ms
5,376 KB |
testcase_36 | AC | 1 ms
5,376 KB |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 2 ms
5,376 KB |
testcase_39 | AC | 1 ms
5,376 KB |
testcase_40 | AC | 2 ms
5,376 KB |
testcase_41 | AC | 2 ms
5,376 KB |
testcase_42 | AC | 2 ms
5,376 KB |
testcase_43 | AC | 1 ms
5,376 KB |
testcase_44 | AC | 1 ms
5,376 KB |
testcase_45 | AC | 2 ms
5,376 KB |
testcase_46 | AC | 1 ms
5,376 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec); template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr); template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa); template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa); template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp); template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp); template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl); template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif namespace matrix_ { struct has_id_method_impl { template <class T_> static auto check(T_ *) -> decltype(T_::id(), std::true_type()); template <class T_> static auto check(...) -> std::false_type; }; template <class T_> struct has_id : decltype(has_id_method_impl::check<T_>(nullptr)) {}; } // namespace matrix_ template <typename T> struct matrix { int H, W; std::vector<T> elem; typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; } inline T &at(int i, int j) { return elem[i * W + j]; } inline T get(int i, int j) const { return elem[i * W + j]; } int height() const { return H; } int width() const { return W; } std::vector<std::vector<T>> vecvec() const { std::vector<std::vector<T>> ret(H); for (int i = 0; i < H; i++) { std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i])); } return ret; } operator std::vector<std::vector<T>>() const { return vecvec(); } matrix() = default; matrix(int H, int W) : H(H), W(W), elem(H * W) {} matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) { for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem)); } template <typename T2, typename std::enable_if<matrix_::has_id<T2>::value>::type * = nullptr> static T2 _T_id() { return T2::id(); } template <typename T2, typename std::enable_if<!matrix_::has_id<T2>::value>::type * = nullptr> static T2 _T_id() { return T2(1); } static matrix Identity(int N) { matrix ret(N, N); for (int i = 0; i < N; i++) ret.at(i, i) = _T_id<T>(); return ret; } matrix operator-() const { matrix ret(H, W); for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i]; return ret; } matrix operator*(const T &v) const { matrix ret = *this; for (auto &x : ret.elem) x *= v; return ret; } matrix operator/(const T &v) const { matrix ret = *this; const T vinv = _T_id<T>() / v; for (auto &x : ret.elem) x *= vinv; return ret; } matrix operator+(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i]; return ret; } matrix operator-(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i]; return ret; } matrix operator*(const matrix &r) const { matrix ret(H, r.W); for (int i = 0; i < H; i++) { for (int k = 0; k < W; k++) { for (int j = 0; j < r.W; j++) ret.at(i, j) += this->get(i, k) * r.get(k, j); } } return ret; } matrix &operator*=(const T &v) { return *this = *this * v; } matrix &operator/=(const T &v) { return *this = *this / v; } matrix &operator+=(const matrix &r) { return *this = *this + r; } matrix &operator-=(const matrix &r) { return *this = *this - r; } matrix &operator*=(const matrix &r) { return *this = *this * r; } bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; } bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; } bool operator<(const matrix &r) const { return elem < r.elem; } matrix pow(int64_t n) const { matrix ret = Identity(H); bool ret_is_id = true; if (n == 0) return ret; for (int i = 63 - __builtin_clzll(n); i >= 0; i--) { if (!ret_is_id) ret *= ret; if ((n >> i) & 1) ret *= (*this), ret_is_id = false; } return ret; } std::vector<T> pow_vec(int64_t n, std::vector<T> vec) const { matrix x = *this; while (n) { if (n & 1) vec = x * vec; x *= x; n >>= 1; } return vec; }; matrix transpose() const { matrix ret(W, H); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j); } return ret; } // Gauss-Jordan elimination // - Require inverse for every non-zero element // - Complexity: O(H^2 W) template <typename T2, typename std::enable_if<std::is_floating_point<T2>::value>::type * = nullptr> static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept { int piv = -1; for (int j = h; j < mtr.H; j++) { if (mtr.get(j, c) and (piv < 0 or std::abs(mtr.get(j, c)) > std::abs(mtr.get(piv, c)))) piv = j; } return piv; } template <typename T2, typename std::enable_if<!std::is_floating_point<T2>::value>::type * = nullptr> static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept { for (int j = h; j < mtr.H; j++) { if (mtr.get(j, c) != T2()) return j; } return -1; } matrix gauss_jordan() const { int c = 0; matrix mtr(*this); std::vector<int> ws; ws.reserve(W); for (int h = 0; h < H; h++) { if (c == W) break; int piv = choose_pivot(mtr, h, c); if (piv == -1) { c++; h--; continue; } if (h != piv) { for (int w = 0; w < W; w++) { std::swap(mtr[piv][w], mtr[h][w]); mtr.at(piv, w) *= -_T_id<T>(); // To preserve sign of determinant } } ws.clear(); for (int w = c; w < W; w++) { if (mtr.at(h, w) != T()) ws.emplace_back(w); } const T hcinv = _T_id<T>() / mtr.at(h, c); for (int hh = 0; hh < H; hh++) if (hh != h) { const T coeff = mtr.at(hh, c) * hcinv; for (auto w : ws) mtr.at(hh, w) -= mtr.at(h, w) * coeff; mtr.at(hh, c) = T(); } c++; } return mtr; } int rank_of_gauss_jordan() const { for (int i = H * W - 1; i >= 0; i--) { if (elem[i] != 0) return i / W + 1; } return 0; } int rank() const { return gauss_jordan().rank_of_gauss_jordan(); } T determinant_of_upper_triangle() const { T ret = _T_id<T>(); for (int i = 0; i < H; i++) ret *= get(i, i); return ret; } int inverse() { assert(H == W); std::vector<std::vector<T>> ret = Identity(H), tmp = *this; int rank = 0; for (int i = 0; i < H; i++) { int ti = i; while (ti < H and tmp[ti][i] == 0) ti++; if (ti == H) { continue; } else { rank++; } ret[i].swap(ret[ti]), tmp[i].swap(tmp[ti]); T inv = _T_id<T>() / tmp[i][i]; for (int j = 0; j < W; j++) ret[i][j] *= inv; for (int j = i + 1; j < W; j++) tmp[i][j] *= inv; for (int h = 0; h < H; h++) { if (i == h) continue; const T c = -tmp[h][i]; for (int j = 0; j < W; j++) ret[h][j] += ret[i][j] * c; for (int j = i + 1; j < W; j++) tmp[h][j] += tmp[i][j] * c; } } *this = ret; return rank; } friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) { assert(m.W == int(v.size())); std::vector<T> ret(m.H); for (int i = 0; i < m.H; i++) { for (int j = 0; j < m.W; j++) ret[i] += m.get(i, j) * v[j]; } return ret; } friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) { assert(int(v.size()) == m.H); std::vector<T> ret(m.W); for (int i = 0; i < m.H; i++) { for (int j = 0; j < m.W; j++) ret[j] += v[i] * m.get(i, j); } return ret; } std::vector<T> prod(const std::vector<T> &v) const { return (*this) * v; } std::vector<T> prod_left(const std::vector<T> &v) const { return v * (*this); } template <class OStream> friend OStream &operator<<(OStream &os, const matrix &x) { os << "[(" << x.H << " * " << x.W << " matrix)"; os << "\n[column sums: "; for (int j = 0; j < x.W; j++) { T s = 0; for (int i = 0; i < x.H; i++) s += x.get(i, j); os << s << ","; } os << "]"; for (int i = 0; i < x.H; i++) { os << "\n["; for (int j = 0; j < x.W; j++) os << x.get(i, j) << ","; os << "]"; } os << "]\n"; return os; } template <class IStream> friend IStream &operator>>(IStream &is, matrix &x) { for (auto &v : x.elem) is >> v; return is; } }; // Solve Ax = b for T = ModInt<PRIME> // - retval: {one of the solution, {freedoms}} (if solution exists) // {{}, {}} (otherwise) // Complexity: // - Yield one of the possible solutions: O(HW rank(A)) (H: # of eqs., W: # of variables) // - Enumerate all of the bases: O(W(H + W)) template <typename T> std::pair<std::vector<T>, std::vector<std::vector<T>>> system_of_linear_equations(matrix<T> A, std::vector<T> b) { int H = A.height(), W = A.width(); matrix<T> M(H, W + 1); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) M[i][j] = A[i][j]; M[i][W] = b[i]; } M = M.gauss_jordan(); std::vector<int> ss(W, -1), ss_nonneg_js; for (int i = 0; i < H; i++) { int j = 0; while (j <= W and M[i][j] == 0) j++; if (j == W) { // No solution return {{}, {}}; } else if (j < W) { ss_nonneg_js.push_back(j); ss[j] = i; } else { break; } } std::vector<T> x(W); std::vector<std::vector<T>> D; for (int j = 0; j < W; j++) { if (ss[j] == -1) { // This part may require W^2 space complexity in output std::vector<T> d(W); d[j] = 1; for (int jj : ss_nonneg_js) { if (jj >= j) break; d[jj] = -M[ss[jj]][j] / M[ss[jj]][jj]; } D.emplace_back(d); } else { x[j] = M[ss[j]][W] / M[ss[j]][j]; } } return std::make_pair(x, D); } template <int md> struct ModInt { #if __cplusplus >= 201402L #define MDCONST constexpr #else #define MDCONST #endif using lint = long long; MDCONST static int mod() { return md; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&]() { std::set<int> fac; int v = md - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < md; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).pow((md - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val_; int val() const noexcept { return val_; } MDCONST ModInt() : val_(0) {} MDCONST ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; } MDCONST ModInt(lint v) { _setval(v % md + md); } MDCONST explicit operator bool() const { return val_ != 0; } MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val_ + x.val_); } MDCONST ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val_ - x.val_ + md); } MDCONST ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.val_ % md); } MDCONST ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.inv().val() % md); } MDCONST ModInt operator-() const { return ModInt()._setval(md - val_); } MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; } MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; } MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; } MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend MDCONST ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % md + x.val_); } friend MDCONST ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % md - x.val_ + md); } friend MDCONST ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.val_ % md); } friend MDCONST ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.inv().val() % md); } MDCONST bool operator==(const ModInt &x) const { return val_ == x.val_; } MDCONST bool operator!=(const ModInt &x) const { return val_ != x.val_; } MDCONST bool operator<(const ModInt &x) const { return val_ < x.val_; } // To use std::map<ModInt, T> friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; return is >> t, x = ModInt(t), is; } MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val_; } MDCONST ModInt pow(lint n) const { ModInt ans = 1, tmp = *this; while (n) { if (n & 1) ans *= tmp; tmp *= tmp, n >>= 1; } return ans; } static std::vector<ModInt> facs, facinvs, invs; MDCONST static void _precalculation(int N) { int l0 = facs.size(); if (N > md) N = md; if (N <= l0) return; facs.resize(N), facinvs.resize(N), invs.resize(N); for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i; facinvs[N - 1] = facs.back().pow(md - 2); for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1); for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1]; } MDCONST ModInt inv() const { if (this->val_ < std::min(md >> 1, 1 << 21)) { if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0}; while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return invs[this->val_]; } else { return this->pow(md - 2); } } MDCONST ModInt fac() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facs[this->val_]; } MDCONST ModInt facinv() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facinvs[this->val_]; } MDCONST ModInt doublefac() const { lint k = (this->val_ + 1) / 2; return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()) : ModInt(k).fac() * ModInt(2).pow(k); } MDCONST ModInt nCr(const ModInt &r) const { return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv() * r.facinv(); } MDCONST ModInt nPr(const ModInt &r) const { return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv(); } ModInt sqrt() const { if (val_ == 0) return 0; if (md == 2) return val_; if (pow((md - 1) / 2) != 1) return 0; ModInt b = 1; while (b.pow((md - 1) / 2) == 1) b += 1; int e = 0, m = md - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = pow((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.pow(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val_, md - x.val_)); } }; template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0}; using mint1 = ModInt<998244353>; using mint2 = ModInt<1000000007>; #include <algorithm> #include <cassert> #include <tuple> #include <utility> #include <vector> // CUT begin // Solve ax+by=gcd(a, b) template <class Int> Int extgcd(Int a, Int b, Int &x, Int &y) { Int d = a; if (b != 0) { d = extgcd(b, a % b, y, x), y -= (a / b) * x; } else { x = 1, y = 0; } return d; } // Calculate a^(-1) (MOD m) s if gcd(a, m) == 1 // Calculate x s.t. ax == gcd(a, m) MOD m template <class Int> Int mod_inverse(Int a, Int m) { Int x, y; extgcd<Int>(a, m, x, y); x %= m; return x + (x < 0) * m; } // Require: 1 <= b // return: (g, x) s.t. g = gcd(a, b), xa = g MOD b, 0 <= x < b/g template <class Int> /* constexpr */ std::pair<Int, Int> inv_gcd(Int a, Int b) { a %= b; if (a < 0) a += b; if (a == 0) return {b, 0}; Int s = b, t = a, m0 = 0, m1 = 1; while (t) { Int u = s / t; s -= t * u, m0 -= m1 * u; auto tmp = s; s = t, t = tmp, tmp = m0, m0 = m1, m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } template <class Int> /* constexpr */ std::pair<Int, Int> crt(const std::vector<Int> &r, const std::vector<Int> &m) { assert(r.size() == m.size()); int n = int(r.size()); // Contracts: 0 <= r0 < m0 Int r0 = 0, m0 = 1; for (int i = 0; i < n; i++) { assert(1 <= m[i]); Int r1 = r[i] % m[i], m1 = m[i]; if (r1 < 0) r1 += m1; if (m0 < m1) { std::swap(r0, r1); std::swap(m0, m1); } if (m0 % m1 == 0) { if (r0 % m1 != r1) return {0, 0}; continue; } Int g, im; std::tie(g, im) = inv_gcd<Int>(m0, m1); Int u1 = m1 / g; if ((r1 - r0) % g) return {0, 0}; Int x = (r1 - r0) / g % u1 * im % u1; r0 += x * m0; m0 *= u1; if (r0 < 0) r0 += m0; } return {r0, m0}; } // 蟻本 P.262 // 中国剰余定理を利用して,色々な素数で割った余りから元の値を復元 // 連立線形合同式 A * x = B mod M の解 // Requirement: M[i] > 0 // Output: x = first MOD second (if solution exists), (0, 0) (otherwise) template <class Int> std::pair<Int, Int> linear_congruence(const std::vector<Int> &A, const std::vector<Int> &B, const std::vector<Int> &M) { Int r = 0, m = 1; assert(A.size() == M.size()); assert(B.size() == M.size()); for (int i = 0; i < (int)A.size(); i++) { assert(M[i] > 0); const Int ai = A[i] % M[i]; Int a = ai * m, b = B[i] - ai * r, d = std::__gcd(M[i], a); if (b % d != 0) { return std::make_pair(0, 0); // 解なし } Int t = b / d * mod_inverse<Int>(a / d, M[i] / d) % (M[i] / d); r += m * t; m *= M[i] / d; } return std::make_pair((r < 0 ? r + m : r), m); } template <class Int = int, class Long = long long> Int pow_mod(Int x, long long n, Int md) { static_assert(sizeof(Int) * 2 <= sizeof(Long), "Watch out for overflow"); if (md == 1) return 0; Int ans = 1; while (n > 0) { if (n & 1) ans = (Long)ans * x % md; x = (Long)x * x % md; n >>= 1; } return ans; } // Integer convolution for arbitrary mod // with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class. // We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`. // input: a (size: n), b (size: m) // return: vector (size: n + m - 1) template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner); constexpr int nttprimes[3] = {998244353, 167772161, 469762049}; // Integer FFT (Fast Fourier Transform) for ModInt class // (Also known as Number Theoretic Transform, NTT) // is_inverse: inverse transform // ** Input size must be 2^n ** template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) { int n = a.size(); if (n == 1) return; static const int mod = MODINT::mod(); static const MODINT root = MODINT::get_primitive_root(); assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0); static std::vector<MODINT> w{1}, iw{1}; for (int m = w.size(); m < n / 2; m *= 2) { MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw; w.resize(m * 2), iw.resize(m * 2); for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv; } if (!is_inverse) { for (int m = n; m >>= 1;) { for (int s = 0, k = 0; s < n; s += 2 * m, k++) { for (int i = s; i < s + m; i++) { MODINT x = a[i], y = a[i + m] * w[k]; a[i] = x + y, a[i + m] = x - y; } } } } else { for (int m = 1; m < n; m *= 2) { for (int s = 0, k = 0; s < n; s += 2 * m, k++) { for (int i = s; i < s + m; i++) { MODINT x = a[i], y = a[i + m]; a[i] = x + y, a[i + m] = (x - y) * iw[k]; } } } int n_inv = MODINT(n).inv().val(); for (auto &v : a) v *= n_inv; } } template <int MOD> std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) { int sz = a.size(); assert(a.size() == b.size() and __builtin_popcount(sz) == 1); std::vector<ModInt<MOD>> ap(sz), bp(sz); for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i]; ntt(ap, false); if (a == b) bp = ap; else ntt(bp, false); for (int i = 0; i < sz; i++) ap[i] *= bp[i]; ntt(ap, true); return ap; } long long garner_ntt_(int r0, int r1, int r2, int mod) { using mint2 = ModInt<nttprimes[2]>; static const long long m01 = 1LL * nttprimes[0] * nttprimes[1]; static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv().val(); static const long long m01_inv_m2 = mint2(m01).inv().val(); int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1]; auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2; return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val()) % mod; } template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) { if (a.empty() or b.empty()) return {}; int sz = 1, n = a.size(), m = b.size(); while (sz < n + m) sz <<= 1; if (sz <= 16) { std::vector<MODINT> ret(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j]; } return ret; } int mod = MODINT::mod(); if (skip_garner or std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) { a.resize(sz), b.resize(sz); if (a == b) { ntt(a, false); b = a; } else { ntt(a, false), ntt(b, false); } for (int i = 0; i < sz; i++) a[i] *= b[i]; ntt(a, true); a.resize(n + m - 1); } else { std::vector<int> ai(sz), bi(sz); for (int i = 0; i < n; i++) ai[i] = a[i].val(); for (int i = 0; i < m; i++) bi[i] = b[i].val(); auto ntt0 = nttconv_<nttprimes[0]>(ai, bi); auto ntt1 = nttconv_<nttprimes[1]>(ai, bi); auto ntt2 = nttconv_<nttprimes[2]>(ai, bi); a.resize(n + m - 1); for (int i = 0; i < n + m - 1; i++) a[i] = garner_ntt_(ntt0[i].val(), ntt1[i].val(), ntt2[i].val(), mod); } return a; } template <typename MODINT> std::vector<MODINT> nttconv(const std::vector<MODINT> &a, const std::vector<MODINT> &b) { return nttconv<MODINT>(a, b, false); } template <class mint> vector<mint> solve(int N) { matrix<mint> A(N + 1, N + 1); vector<mint> b(N + 1); b.at(N) = 1; REP(deg, N + 1) { vector<mint> f{mint(deg).facinv()}; REP(m, deg) f = nttconv(f, vector<mint>{mint(-m), 1}); REP(e, N + 1) { if(e < int(f.size())) A[e][deg] = f.at(e); } } dbg(A); dbg(b); return system_of_linear_equations<mint>(A, b).first; } int main() { int N, M; cin >> N >> M; if (N < M) { puts("0"); return 0; } // if (N == 0) { // cout << (M == 0) << endl; // return 0; // } auto sol1 = solve<mint1>(N); auto sol2 = solve<mint2>(N); dbg(sol1); dbg(sol2); cout << linear_congruence<lint>(vector<lint>{1, 1}, vector<lint>{sol1.at(M).val(), sol2.at(M).val()}, vector<lint>{mint1::mod(), mint2::mod()}).first << endl; // exit(1); }