結果
問題 | No.306 さいたま2008 |
ユーザー | T101010101 |
提出日時 | 2023-01-30 16:10:54 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 3,589 bytes |
コンパイル時間 | 2,691 ms |
コンパイル使用メモリ | 261,364 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-30 03:26:11 |
合計ジャッジ時間 | 3,556 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
ソースコード
#pragma region Macros #include <bits/extc++.h> using namespace std; using namespace __gnu_pbds; // using namespace __gnu_cxx; // #include <boost/multiprecision/cpp_int.hpp> // namespace mp = boost::multiprecision; // using Bint = mp::cpp_int; #define TO_STRING(var) # var #define pb emplace_back #define int ll #define endl '\n' using ll = long long; using ld = long double; const ld PI = acos(-1); const ld EPS = 1e-10; const int INF = 1 << 30; const ll INFL = 1LL << 61; // const int MOD = 998244353; const int MOD = 1000000007; __attribute__((constructor)) void constructor() { ios::sync_with_stdio(false); cin.tie(nullptr); // ifstream in("input.txt"); // cin.rdbuf(in.rdbuf()); cout << fixed << setprecision(15); } template<int mod> class modint{ public: int val = 0; modint(int x = 0) { while (x < 0) x += mod; val = x % mod; } modint(const modint &r) { val = r.val; } modint operator -() { return modint(-val); } modint operator +(const modint &r) { return modint(*this) += r; } modint operator -(const modint &r) { return modint(*this) -= r; } modint operator *(const modint &r) { return modint(*this) *= r; } modint operator /(const modint &r) { return modint(*this) /= r; } modint &operator +=(const modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; } modint &operator -=(const modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; } modint &operator *=(const modint &r) { val = val * r.val % mod; return *this; } modint &operator /=(const modint &r) { int a = r.val, b = mod, u = 1, v = 0; while (b) { int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } val = val * u % mod; if (val < 0) val += mod; return *this; } bool operator ==(const modint& r) { return this -> val == r.val; } bool operator <(const modint& r) { return this -> val < r.val; } bool operator !=(const modint& r) { return this -> val != r.val; } }; using mint = modint<MOD>; istream &operator >>(istream &is, mint& x) { int t; is >> t; x = t; return (is); } ostream &operator <<(ostream &os, const mint& x) { return os << x.val; } mint modpow(const mint &a, int n) { if (n == 0) return 1; mint t = modpow(a, n / 2); t = t * t; if (n & 1) t = t * a; return t; } int modpow(int x, int n, int mod) { int ret = 1; while (n > 0) { if (n % 2 == 1) ret = ret * x % mod; x = x * x % mod; n /= 2; } return ret; } int ceil(int x, int y) { return (x > 0 ? (x + y - 1) / y : x / y); } #pragma endregion ld xa, ya, xb, yb; ld ternary_search(ld l, ld r, const function<ld(ld)> f, const bool is_downward_convex = true) { int loop = 500; if (is_downward_convex) { // 下に凸 while (loop--){ auto mid_l = (l * 2 + r) / 3, mid_r = (l + 2 * r) / 3; if (f(mid_l) >= f(mid_r)) l = mid_l; else r = mid_r; } } else { // 上に凸 while (loop--){ auto mid_l = (l * 2 + r) / 3, mid_r = (l + 2 * r) / 3; if (f(mid_l) <= f(mid_r)) l = mid_l; else r = mid_r; } } return l; } signed main() { cin >> xa >> ya >> xb >> yb; auto f = [&](ld y){ return (ld)sqrt(xa * xa + (ya - y) * (ya - y)) + (ld)sqrt(xb * xb + (yb - y) * (yb - y)); }; ld y = ternary_search(0.0, 1000.0, f); cout << y << endl; }