結果
| 問題 |
No.649 ここでちょっとQK!
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-02-02 22:51:50 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 224 ms / 3,000 ms |
| コード長 | 23,903 bytes |
| コンパイル時間 | 1,348 ms |
| コンパイル使用メモリ | 107,580 KB |
| 最終ジャッジ日時 | 2025-02-10 08:18:04 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 32 |
ソースコード
#define PROBLEM "https://yukicoder.me/problems/no/649"
#include <iostream>
#include <cassert>
#include <cstdint>
#include <string>
#include <random>
#include <tuple>
#include <vector>
#include <utility>
namespace suisen::internal::implicit_treap {
template <typename T, typename Derived>
struct Node {
using random_engine = std::mt19937;
static inline random_engine rng{ std::random_device{}() };
using node_type = Derived;
using node_pointer = uint32_t;
using priority_type = std::invoke_result_t<random_engine>;
using size_type = uint32_t;
using difference_type = int32_t;
using value_type = T;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
static inline std::vector<node_type> _nodes{};
static inline std::vector<node_pointer> _erased{};
static constexpr node_pointer null = ~node_pointer(0);
node_pointer _ch[2]{ null, null };
value_type _val;
size_type _size;
priority_type _priority;
bool _rev = false;
Node(const value_type val = {}): _val(val), _size(1), _priority(rng()) {}
static void reserve(size_type capacity) { _nodes.reserve(capacity); }
static node_type& node(node_pointer t) { return _nodes[t]; }
static const node_type& const_node(node_pointer t) { return _nodes[t]; }
static value_type& value(node_pointer t) { return node(t)._val; }
static value_type set_value(node_pointer t, const value_type& new_val) { return std::exchange(value(t), new_val); }
static bool empty(node_pointer t) { return t == null; }
static size_type& size(node_pointer t) { return node(t)._size; }
static size_type safe_size(node_pointer t) { return empty(t) ? 0 : size(t); }
static priority_type priority(node_pointer t) { return const_node(t)._priority; }
static node_pointer& child0(node_pointer t) { return node(t)._ch[0]; }
static node_pointer& child1(node_pointer t) { return node(t)._ch[1]; }
static node_pointer child(node_pointer t, bool b) { return node(t)._ch[b]; }
static node_pointer set_child0(node_pointer t, node_pointer cid) { return std::exchange(child0(t), cid); }
static node_pointer set_child1(node_pointer t, node_pointer cid) { return std::exchange(child1(t), cid); }
static bool& reversed(node_pointer t) { return node(t)._rev; }
static node_pointer update(node_pointer t) { // t : not null
size(t) = safe_size(child0(t)) + safe_size(child1(t)) + 1;
return t;
}
static bool push(node_pointer t) { // t : not null
bool rev = t != null and std::exchange(reversed(t), false);
if (rev) {
reverse_all(child0(t));
reverse_all(child1(t));
}
return rev;
}
static node_pointer empty_node() { return null; }
template <typename ...Args>
static node_pointer create_node(Args &&...args) {
if (_erased.size()) {
node_pointer res = _erased.back();
_erased.pop_back();
node(res) = node_type(std::forward<Args>(args)...);
return res;
} else {
node_pointer res = _nodes.size();
_nodes.emplace_back(std::forward<Args>(args)...);
return res;
}
}
static void delete_node(node_pointer t) { _erased.push_back(t); }
static void delete_tree(node_pointer t) {
if (t == null) return;
delete_tree(child0(t));
delete_tree(child1(t));
delete_node(t);
}
template <typename ...Args>
static node_pointer build(Args &&... args) {
node_pointer res = empty_node();
for (auto&& e : std::vector<value_type>(std::forward<Args>(args)...)) {
res = push_back(res, std::move(e));
}
return res;
}
static std::pair<node_pointer, node_pointer> split(node_pointer t, size_type k) {
if (t == null) {
return { null, null };
}
node_type::push(t);
if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) {
auto [ll, lr] = split(child0(t), k);
set_child0(t, lr);
return { ll, node_type::update(t) };
} else {
auto [rl, rr] = split(child1(t), k - (lsiz + 1));
set_child1(t, rl);
return { node_type::update(t), rr };
}
}
static std::tuple<node_pointer, node_pointer, node_pointer> split(node_pointer t, size_type l, size_type r) {
auto [tlm, tr] = split(t, r);
auto [tl, tm] = split(tlm, l);
return { tl, tm, tr };
}
static node_pointer merge(node_pointer tl, node_pointer tr) {
if (tl == null or tr == null) {
return tl ^ tr ^ null;
}
if (priority(tl) < priority(tr)) {
node_type::push(tr);
set_child0(tr, merge(tl, child0(tr)));
return node_type::update(tr);
} else {
node_type::push(tl);
set_child1(tl, merge(child1(tl), tr));
return node_type::update(tl);
}
}
static node_pointer merge(node_pointer tl, node_pointer tm, node_pointer tr) {
return merge(merge(tl, tm), tr);
}
static node_pointer insert_impl(node_pointer t, size_type k, node_pointer new_node) {
if (t == null) {
return new_node;
}
if (priority(new_node) > priority(t)) {
auto [tl, tr] = split(t, k);
set_child0(new_node, tl);
set_child1(new_node, tr);
return node_type::update(new_node);
} else {
node_type::push(t);
if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) {
set_child0(t, insert_impl(child0(t), k, new_node));
} else {
set_child1(t, insert_impl(child1(t), k - (lsiz + 1), new_node));
}
return node_type::update(t);
}
}
template <typename ...Args>
static node_pointer insert(node_pointer t, size_type k, Args &&...args) { return insert_impl(t, k, create_node(std::forward<Args>(args)...)); }
template <typename ...Args>
static node_pointer push_front(node_pointer t, Args &&...args) { return insert(t, 0, std::forward<Args>(args)...); }
template <typename ...Args>
static node_pointer push_back(node_pointer t, Args &&...args) { return insert(t, safe_size(t), std::forward<Args>(args)...); }
static node_pointer erase(node_pointer t, size_type k) {
node_type::push(t);
if (const size_type lsiz = safe_size(child0(t)); k == lsiz) {
delete_node(t);
return merge(child0(t), child1(t));
} else if (k < lsiz) {
set_child0(t, erase(child0(t), k));
return node_type::update(t);
} else {
set_child1(t, erase(child1(t), k - (lsiz + 1)));
return node_type::update(t);
}
}
static node_pointer pop_front(node_pointer t) { return erase(t, 0); }
static node_pointer pop_back(node_pointer t) { return erase(t, safe_size(t) - 1); }
static node_pointer rotate(node_pointer t, size_type k) {
auto [tl, tr] = split(t, k);
return merge(tr, tl);
}
static value_type& get(node_pointer t, size_type k) {
while (true) {
node_type::push(t);
if (const size_type lsiz = safe_size(child0(t)); k == lsiz) {
return value(t);
} else if (k < lsiz) {
t = child0(t);
} else {
k -= lsiz + 1;
t = child1(t);
}
}
}
template <typename Func>
static node_pointer set_update(node_pointer t, size_type k, const Func& f) {
node_type::push(t);
if (const size_type lsiz = safe_size(child0(t)); k == lsiz) {
value_type& val = value(t);
val = f(const_cast<const value_type&>(val));
} else if (k < lsiz) {
set_child0(t, set_update(child0(t), k, f));
} else {
set_child1(t, set_update(child1(t), k - (lsiz + 1), f));
}
return node_type::update(t);
}
static node_pointer reverse_all(node_pointer t) {
if (t != null) {
reversed(t) ^= true;
std::swap(child0(t), child1(t));
}
return t;
}
static node_pointer reverse(node_pointer t, size_type l, size_type r) {
auto [tl, tm, tr] = split(t, l, r);
return merge(tl, Derived::reverse_all(tm), tr);
}
static std::vector<value_type> dump(node_pointer t) {
std::vector<value_type> res;
res.reserve(safe_size(t));
auto rec = [&](auto rec, node_pointer t) -> void {
if (t == null) return;
node_type::push(t);
rec(rec, child0(t));
res.push_back(value(t));
rec(rec, child1(t));
};
rec(rec, t);
return res;
}
// Predicate : (value, index) -> { false, true }
template <typename Predicate>
static size_type binary_search(node_pointer t, const Predicate& f) {
int ng = -1, ok = safe_size(t);
while (ok - ng > 1) {
node_type::push(t);
if (const int root = ng + safe_size(child0(t)) + 1; f(value(t), root)) {
ok = root, t = child0(t);
} else {
ng = root, t = child1(t);
}
}
return ok;
}
// comp(T t, U u) = (t < u)
template <typename U, typename Compare = std::less<>>
static size_type lower_bound(node_pointer t, const U& target, Compare comp = {}) {
return binary_search(t, [&](const value_type& v, int) { return not comp(v, target); });
}
// comp(T u, U t) = (u < t)
template <typename U, typename Compare = std::less<>>
static size_type upper_bound(node_pointer t, const U& target, Compare comp = {}) {
return binary_search(t, [&](const value_type& v, int) { return comp(target, v); });
}
template <bool reversed_, bool constant_>
struct NodeIterator {
static constexpr bool constant = constant_;
static constexpr bool reversed = reversed_;
using difference_type = Node::difference_type;
using value_type = Node::value_type;
using pointer = std::conditional_t<constant, Node::const_pointer, Node::pointer>;
using reference = std::conditional_t<constant, Node::const_reference, Node::reference>;
using iterator_cateogory = std::random_access_iterator_tag;
NodeIterator(): root(null), index(0) {}
NodeIterator(node_pointer root, size_type index): root(root), index(index) {}
reference operator*() const { return value(stk.back()); }
reference operator[](difference_type k) const { return *((*this) + k); }
NodeIterator& operator++() { return *this += 1; }
NodeIterator& operator--() { return *this -= 1; }
NodeIterator& operator+=(difference_type k) { return suc(+k), * this; }
NodeIterator& operator-=(difference_type k) { return suc(-k), * this; }
NodeIterator operator++(int) { NodeIterator res = *this; ++(*this); return res; }
NodeIterator operator--(int) { NodeIterator res = *this; --(*this); return res; }
friend NodeIterator operator+(NodeIterator it, difference_type k) { return it += k; }
friend NodeIterator operator+(difference_type k, NodeIterator it) { return it += k; }
friend NodeIterator operator-(NodeIterator it, difference_type k) { return it -= k; }
friend difference_type operator-(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index - rhs.index; }
friend bool operator==(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index == rhs.index; }
friend bool operator!=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index != rhs.index; }
friend bool operator<(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index < rhs.index; }
friend bool operator>(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index > rhs.index; }
friend bool operator<=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index <= rhs.index; }
friend bool operator>=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index >= rhs.index; }
static NodeIterator kth_iter(node_pointer t, size_type k) {
NodeIterator it(t, k);
if (k == safe_size(t)) return it;
auto& stk = it.stk;
while (t != null) {
node_type::push(t);
stk.push_back(t);
if (size_type siz = safe_size(child(t, reversed)); k == siz) {
break;
} else if (k < siz) {
t = child(t, reversed);
} else {
k -= siz + 1;
t = child(t, not reversed);
}
}
return it;
}
private:
node_pointer root;
size_type index;
std::vector<node_pointer> stk;
void up(const bool positive) {
node_pointer t = stk.back();
do {
stk.pop_back();
if (stk.empty() or t == child(stk.back(), not positive)) break;
t = stk.back();
} while (stk.size());
}
void down(node_pointer t, size_type k, const bool positive) {
while (true) {
node_type::push(t);
stk.push_back(t);
if (size_type siz = safe_size(child(t, not positive)); k == siz) {
break;
} else if (k < siz) {
t = child(t, not positive);
} else {
k -= siz + 1;
t = child(t, positive);
}
}
}
void suc(difference_type k) {
index += k;
const bool positive = k < 0 ? (k = -k, reversed) : not reversed;
if (k and stk.empty()) {
for (node_pointer t = root; t != null; t = child(t, not positive)) {
node_type::push(t);
stk.push_back(t);
}
--k;
}
while (k) {
node_pointer t = child(stk.back(), positive);
if (difference_type siz = safe_size(t); k > siz) {
up(positive);
k -= siz + 1;
} else {
down(t, k - 1, positive);
break;
}
}
}
};
using iterator = NodeIterator<false, false>;
using reverse_iterator = NodeIterator<true, false>;
using const_iterator = NodeIterator<false, true>;
using const_reverse_iterator = NodeIterator<true, true>;
static iterator begin(node_pointer t) { return ++iterator(t, -1); }
static iterator end(node_pointer t) { return iterator(t, safe_size(t)); }
static iterator kth_iterator(node_pointer t, size_type k) { return iterator::kth_iter(t, k); }
static reverse_iterator rbegin(node_pointer t) { return ++reverse_iterator(t, -1); }
static reverse_iterator rend(node_pointer t) { return reverse_iterator(t, safe_size(t)); }
static reverse_iterator kth_reverse_iterator(node_pointer t, size_type k) { return reverse_iterator::kth_iter(t, k); }
static const_iterator cbegin(node_pointer t) { return ++const_iterator(t, -1); }
static const_iterator cend(node_pointer t) { return const_iterator(t, safe_size(t)); }
static const_iterator kth_const_iterator(node_pointer t, size_type k) { return const_iterator::kth_iter(t, k); }
static const_reverse_iterator crbegin(node_pointer t) { return ++const_reverse_iterator(t, -1); }
static const_reverse_iterator crend(node_pointer t) { return const_reverse_iterator(t, safe_size(t)); }
static const_reverse_iterator kth_const_reverse_iterator(node_pointer t, size_type k) { return const_reverse_iterator::kth_iter(t, k); }
};
} // namespace suisen::internal::implicit_treap
namespace suisen {
namespace internal::implicit_treap {
template <typename T>
struct DefaultNode: Node<T, DefaultNode<T>> {
using base = Node<T, DefaultNode<T>>;
using base::base;
};
}
template <typename T>
class DynamicArray {
using node_type = internal::implicit_treap::DefaultNode<T>;
using node_pointer = typename node_type::node_pointer;
node_pointer _root;
struct node_pointer_construct {};
DynamicArray(node_pointer root, node_pointer_construct): _root(root) {}
public:
using value_type = typename node_type::value_type;
DynamicArray(): _root(node_type::empty_node()) {}
explicit DynamicArray(size_t n, const value_type& fill_value = {}): _root(node_type::build(n, fill_value)) {}
template <typename U>
DynamicArray(const std::vector<U>& dat) : _root(node_type::build(dat.begin(), dat.end())) {}
void free() {
node_type::delete_tree(_root);
_root = node_type::empty_node();
}
void clear() { free(); }
static void reserve(size_t capacity) { node_type::reserve(capacity); }
bool empty() const { return node_type::empty(_root); }
int size() const { return node_type::safe_size(_root); }
value_type& operator[](size_t k) {
assert(k < size_t(size()));
return node_type::get(_root, k);
}
const value_type& operator[](size_t k) const {
assert(k < size_t(size()));
return node_type::get(_root, k);
}
value_type& front() { return (*this)[0]; }
value_type& back() { return (*this)[size() - 1]; }
const value_type& front() const { return (*this)[0]; }
const value_type& back() const { return (*this)[size() - 1]; }
void insert(size_t k, const value_type& val) {
assert(k <= size_t(size()));
_root = node_type::insert(_root, k, val);
}
void push_front(const value_type& val) { _root = node_type::push_front(_root, val); }
void push_back(const value_type& val) { _root = node_type::push_back(_root, val); }
void erase(size_t k) {
assert(k <= size_t(size()));
_root = node_type::erase(_root, k);
}
void pop_front() { _root = node_type::pop_front(_root); }
void pop_back() { _root = node_type::pop_back(_root); }
DynamicArray split(size_t k) {
assert(k <= size_t(size()));
node_pointer root_r;
std::tie(_root, root_r) = node_type::split(_root, k);
return DynamicArray(root_r, node_pointer_construct{});
}
void merge(DynamicArray r) { _root = node_type::merge(_root, r._root); }
void rotate(size_t k) {
assert(k <= size_t(size()));
_root = node_type::rotate(_root, k);
}
void reverse(size_t l, size_t r) {
assert(l <= r and r <= size_t(size()));
if (r - l >= 2) _root = node_type::reverse(_root, l, r);
}
void reverse_all() { _root = node_type::reverse_all(_root); }
std::vector<value_type> dump() const { return node_type::dump(_root); }
// Returns the first i s.t. f(A[i]) = true by binary search.
// Requirement: f(A[i]) is monotonic.
template <typename Predicate>
int binary_search_find_first(const Predicate& f) const { return node_type::binary_search(_root, f); }
// comp(T t, U u) = (t < u)
template <typename U, typename Compare = std::less<>>
int lower_bound(const U& target, Compare comp = {}) const { return node_type::lower_bound(_root, target, comp); }
// comp(T u, U t) = (u < t)
template <typename U, typename Compare = std::less<>>
int upper_bound(const U& target, Compare comp = {}) const { return node_type::upper_bound(_root, target, comp); }
using iterator = typename node_type::iterator;
using reverse_iterator = typename node_type::reverse_iterator;
using const_iterator = typename node_type::const_iterator;
using const_reverse_iterator = typename node_type::const_reverse_iterator;
iterator begin() { return node_type::begin(_root); }
iterator end() { return node_type::end(_root); }
iterator kth_iterator(size_t k) { return node_type::kth_iterator(_root, k); }
reverse_iterator rbegin() { return node_type::rbegin(_root); }
reverse_iterator rend() { return node_type::rend(_root); }
reverse_iterator kth_reverse_iterator(size_t k) { return node_type::kth_reverse_iterator(_root, k); }
const_iterator begin() const { return cbegin(); }
const_iterator end() const { return cend(); }
const_iterator kth_iterator(size_t k) const { return kth_const_iterator(k); }
const_reverse_iterator rbegin() const { return crbegin(); }
const_reverse_iterator rend() const { return crend(); }
const_reverse_iterator kth_reverse_iterator(size_t k) const { return kth_const_reverse_iterator(k); }
const_iterator cbegin() const { return node_type::cbegin(_root); }
const_iterator cend() const { return node_type::cend(_root); }
const_iterator kth_const_iterator(size_t k) const { return node_type::kth_const_iterator(_root, k); }
const_reverse_iterator crbegin() const { return node_type::crbegin(_root); }
const_reverse_iterator crend() const { return node_type::crend(_root); }
const_reverse_iterator kth_const_reverse_iterator(size_t k) const { return node_type::kth_const_reverse_iterator(_root, k); }
};
} // namespace suisen
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int q, k;
std::cin >> q >> k;
using suisen::DynamicArray;
DynamicArray<long long> a;
while (q --> 0) {
int t;
std::cin >> t;
if (t == 1) {
long long v;
std::cin >> v;
a.insert(a.lower_bound(v), v);
} else {
if (a.size() < k) {
std::cout << -1 << '\n';
} else {
long long v = a[k - 1];
a.erase(k - 1);
std::cout << v << '\n';
}
}
}
}