結果
問題 | No.649 ここでちょっとQK! |
ユーザー | suisen |
提出日時 | 2023-02-02 23:02:34 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 170 ms / 3,000 ms |
コード長 | 24,093 bytes |
コンパイル時間 | 1,139 ms |
コンパイル使用メモリ | 114,132 KB |
実行使用メモリ | 13,808 KB |
最終ジャッジ日時 | 2024-07-02 09:09:26 |
合計ジャッジ時間 | 4,903 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 22 ms
5,376 KB |
testcase_04 | AC | 80 ms
13,676 KB |
testcase_05 | AC | 79 ms
13,696 KB |
testcase_06 | AC | 80 ms
13,804 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 78 ms
8,560 KB |
testcase_13 | AC | 75 ms
8,692 KB |
testcase_14 | AC | 69 ms
8,688 KB |
testcase_15 | AC | 80 ms
8,560 KB |
testcase_16 | AC | 75 ms
8,560 KB |
testcase_17 | AC | 86 ms
8,560 KB |
testcase_18 | AC | 94 ms
8,560 KB |
testcase_19 | AC | 104 ms
8,564 KB |
testcase_20 | AC | 117 ms
8,560 KB |
testcase_21 | AC | 120 ms
8,564 KB |
testcase_22 | AC | 133 ms
13,680 KB |
testcase_23 | AC | 146 ms
13,808 KB |
testcase_24 | AC | 164 ms
13,684 KB |
testcase_25 | AC | 161 ms
13,680 KB |
testcase_26 | AC | 170 ms
13,680 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 70 ms
8,688 KB |
testcase_31 | AC | 73 ms
8,560 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 2 ms
5,376 KB |
ソースコード
#define PROBLEM "https://yukicoder.me/problems/no/649" #include <iostream> #include <cassert> #include <cstdint> #include <string> #include <random> #include <tuple> #include <vector> #include <utility> namespace suisen::internal::implicit_treap { template <typename T, typename Derived> struct Node { using random_engine = std::mt19937; static inline random_engine rng{ std::random_device{}() }; using node_type = Derived; using node_pointer = uint32_t; using priority_type = std::invoke_result_t<random_engine>; using size_type = uint32_t; using difference_type = int32_t; using value_type = T; using pointer = value_type*; using const_pointer = const value_type*; using reference = value_type&; using const_reference = const value_type&; static inline std::vector<node_type> _nodes{}; static inline std::vector<node_pointer> _erased{}; static constexpr node_pointer null = ~node_pointer(0); node_pointer _ch[2]{ null, null }; value_type _val; size_type _size; priority_type _priority; bool _rev = false; Node(const value_type val = {}): _val(val), _size(1), _priority(rng()) {} static void reserve(size_type capacity) { _nodes.reserve(capacity); } static node_type& node(node_pointer t) { return _nodes[t]; } static const node_type& const_node(node_pointer t) { return _nodes[t]; } static value_type& value(node_pointer t) { return node(t)._val; } static value_type set_value(node_pointer t, const value_type& new_val) { return std::exchange(value(t), new_val); } static bool empty(node_pointer t) { return t == null; } static size_type& size(node_pointer t) { return node(t)._size; } static size_type safe_size(node_pointer t) { return empty(t) ? 0 : size(t); } static priority_type priority(node_pointer t) { return const_node(t)._priority; } static node_pointer& child0(node_pointer t) { return node(t)._ch[0]; } static node_pointer& child1(node_pointer t) { return node(t)._ch[1]; } static node_pointer child(node_pointer t, bool b) { return node(t)._ch[b]; } static node_pointer set_child0(node_pointer t, node_pointer cid) { return std::exchange(child0(t), cid); } static node_pointer set_child1(node_pointer t, node_pointer cid) { return std::exchange(child1(t), cid); } static bool& reversed(node_pointer t) { return node(t)._rev; } static node_pointer update(node_pointer t) { // t : not null size(t) = safe_size(child0(t)) + safe_size(child1(t)) + 1; return t; } static bool push(node_pointer t) { // t : not null bool rev = t != null and std::exchange(reversed(t), false); if (rev) { reverse_all(child0(t)); reverse_all(child1(t)); } return rev; } static node_pointer empty_node() { return null; } template <typename ...Args> static node_pointer create_node(Args &&...args) { if (_erased.size()) { node_pointer res = _erased.back(); _erased.pop_back(); node(res) = node_type(std::forward<Args>(args)...); return res; } else { node_pointer res = _nodes.size(); _nodes.emplace_back(std::forward<Args>(args)...); return res; } } static void delete_node(node_pointer t) { _erased.push_back(t); } static void delete_tree(node_pointer t) { if (t == null) return; delete_tree(child0(t)); delete_tree(child1(t)); delete_node(t); } template <typename ...Args> static node_pointer build(Args &&... args) { node_pointer res = empty_node(); for (auto&& e : std::vector<value_type>(std::forward<Args>(args)...)) { res = push_back(res, std::move(e)); } return res; } static std::pair<node_pointer, node_pointer> split(node_pointer t, size_type k) { if (t == null) { return { null, null }; } node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) { auto [ll, lr] = split(child0(t), k); set_child0(t, lr); return { ll, node_type::update(t) }; } else { auto [rl, rr] = split(child1(t), k - (lsiz + 1)); set_child1(t, rl); return { node_type::update(t), rr }; } } static std::tuple<node_pointer, node_pointer, node_pointer> split(node_pointer t, size_type l, size_type r) { auto [tlm, tr] = split(t, r); auto [tl, tm] = split(tlm, l); return { tl, tm, tr }; } static node_pointer merge(node_pointer tl, node_pointer tr) { if (tl == null or tr == null) { return tl ^ tr ^ null; } if (priority(tl) < priority(tr)) { node_type::push(tr); set_child0(tr, merge(tl, child0(tr))); return node_type::update(tr); } else { node_type::push(tl); set_child1(tl, merge(child1(tl), tr)); return node_type::update(tl); } } static node_pointer merge(node_pointer tl, node_pointer tm, node_pointer tr) { return merge(merge(tl, tm), tr); } static node_pointer insert_impl(node_pointer t, size_type k, node_pointer new_node) { if (t == null) { return new_node; } if (priority(new_node) > priority(t)) { auto [tl, tr] = split(t, k); set_child0(new_node, tl); set_child1(new_node, tr); return node_type::update(new_node); } else { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) { set_child0(t, insert_impl(child0(t), k, new_node)); } else { set_child1(t, insert_impl(child1(t), k - (lsiz + 1), new_node)); } return node_type::update(t); } } template <typename ...Args> static node_pointer insert(node_pointer t, size_type k, Args &&...args) { return insert_impl(t, k, create_node(std::forward<Args>(args)...)); } template <typename ...Args> static node_pointer push_front(node_pointer t, Args &&...args) { return insert(t, 0, std::forward<Args>(args)...); } template <typename ...Args> static node_pointer push_back(node_pointer t, Args &&...args) { return insert(t, safe_size(t), std::forward<Args>(args)...); } static std::pair<node_pointer, value_type> erase(node_pointer t, size_type k) { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k == lsiz) { delete_node(t); return { merge(child0(t), child1(t)), std::move(value(t)) }; } else if (k < lsiz) { auto [c0, v] = erase(child0(t), k); set_child0(t, c0); return { node_type::update(t), std::move(v) }; } else { auto [c1, v] = erase(child1(t), k - (lsiz + 1)); set_child1(t, c1); return { node_type::update(t), std::move(v) }; } } static std::pair<node_pointer, value_type> pop_front(node_pointer t) { return erase(t, 0); } static std::pair<node_pointer, value_type> pop_back(node_pointer t) { return erase(t, safe_size(t) - 1); } static node_pointer rotate(node_pointer t, size_type k) { auto [tl, tr] = split(t, k); return merge(tr, tl); } static value_type& get(node_pointer t, size_type k) { while (true) { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k == lsiz) { return value(t); } else if (k < lsiz) { t = child0(t); } else { k -= lsiz + 1; t = child1(t); } } } template <typename Func> static node_pointer set_update(node_pointer t, size_type k, const Func& f) { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k == lsiz) { value_type& val = value(t); val = f(const_cast<const value_type&>(val)); } else if (k < lsiz) { set_child0(t, set_update(child0(t), k, f)); } else { set_child1(t, set_update(child1(t), k - (lsiz + 1), f)); } return node_type::update(t); } static node_pointer reverse_all(node_pointer t) { if (t != null) { reversed(t) ^= true; std::swap(child0(t), child1(t)); } return t; } static node_pointer reverse(node_pointer t, size_type l, size_type r) { auto [tl, tm, tr] = split(t, l, r); return merge(tl, Derived::reverse_all(tm), tr); } static std::vector<value_type> dump(node_pointer t) { std::vector<value_type> res; res.reserve(safe_size(t)); auto rec = [&](auto rec, node_pointer t) -> void { if (t == null) return; node_type::push(t); rec(rec, child0(t)); res.push_back(value(t)); rec(rec, child1(t)); }; rec(rec, t); return res; } // Predicate : (value, index) -> { false, true } template <typename Predicate> static size_type binary_search(node_pointer t, const Predicate& f) { int ng = -1, ok = safe_size(t); while (ok - ng > 1) { node_type::push(t); if (const int root = ng + safe_size(child0(t)) + 1; f(value(t), root)) { ok = root, t = child0(t); } else { ng = root, t = child1(t); } } return ok; } // comp(T t, U u) = (t < u) template <typename U, typename Compare = std::less<>> static size_type lower_bound(node_pointer t, const U& target, Compare comp = {}) { return binary_search(t, [&](const value_type& v, int) { return not comp(v, target); }); } // comp(T u, U t) = (u < t) template <typename U, typename Compare = std::less<>> static size_type upper_bound(node_pointer t, const U& target, Compare comp = {}) { return binary_search(t, [&](const value_type& v, int) { return comp(target, v); }); } template <bool reversed_, bool constant_> struct NodeIterator { static constexpr bool constant = constant_; static constexpr bool reversed = reversed_; using difference_type = Node::difference_type; using value_type = Node::value_type; using pointer = std::conditional_t<constant, Node::const_pointer, Node::pointer>; using reference = std::conditional_t<constant, Node::const_reference, Node::reference>; using iterator_cateogory = std::random_access_iterator_tag; NodeIterator(): root(null), index(0) {} NodeIterator(node_pointer root, size_type index): root(root), index(index) {} reference operator*() const { return value(stk.back()); } reference operator[](difference_type k) const { return *((*this) + k); } NodeIterator& operator++() { return *this += 1; } NodeIterator& operator--() { return *this -= 1; } NodeIterator& operator+=(difference_type k) { return suc(+k), * this; } NodeIterator& operator-=(difference_type k) { return suc(-k), * this; } NodeIterator operator++(int) { NodeIterator res = *this; ++(*this); return res; } NodeIterator operator--(int) { NodeIterator res = *this; --(*this); return res; } friend NodeIterator operator+(NodeIterator it, difference_type k) { return it += k; } friend NodeIterator operator+(difference_type k, NodeIterator it) { return it += k; } friend NodeIterator operator-(NodeIterator it, difference_type k) { return it -= k; } friend difference_type operator-(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index - rhs.index; } friend bool operator==(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index == rhs.index; } friend bool operator!=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index != rhs.index; } friend bool operator<(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index < rhs.index; } friend bool operator>(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index > rhs.index; } friend bool operator<=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index <= rhs.index; } friend bool operator>=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index >= rhs.index; } static NodeIterator kth_iter(node_pointer t, size_type k) { NodeIterator it(t, k); if (k == safe_size(t)) return it; auto& stk = it.stk; while (t != null) { node_type::push(t); stk.push_back(t); if (size_type siz = safe_size(child(t, reversed)); k == siz) { break; } else if (k < siz) { t = child(t, reversed); } else { k -= siz + 1; t = child(t, not reversed); } } return it; } private: node_pointer root; size_type index; std::vector<node_pointer> stk; void up(const bool positive) { node_pointer t = stk.back(); do { stk.pop_back(); if (stk.empty() or t == child(stk.back(), not positive)) break; t = stk.back(); } while (stk.size()); } void down(node_pointer t, size_type k, const bool positive) { while (true) { node_type::push(t); stk.push_back(t); if (size_type siz = safe_size(child(t, not positive)); k == siz) { break; } else if (k < siz) { t = child(t, not positive); } else { k -= siz + 1; t = child(t, positive); } } } void suc(difference_type k) { index += k; const bool positive = k < 0 ? (k = -k, reversed) : not reversed; if (k and stk.empty()) { for (node_pointer t = root; t != null; t = child(t, not positive)) { node_type::push(t); stk.push_back(t); } --k; } while (k) { node_pointer t = child(stk.back(), positive); if (difference_type siz = safe_size(t); k > siz) { up(positive); k -= siz + 1; } else { down(t, k - 1, positive); break; } } } }; using iterator = NodeIterator<false, false>; using reverse_iterator = NodeIterator<true, false>; using const_iterator = NodeIterator<false, true>; using const_reverse_iterator = NodeIterator<true, true>; static iterator begin(node_pointer t) { return ++iterator(t, -1); } static iterator end(node_pointer t) { return iterator(t, safe_size(t)); } static iterator kth_iterator(node_pointer t, size_type k) { return iterator::kth_iter(t, k); } static reverse_iterator rbegin(node_pointer t) { return ++reverse_iterator(t, -1); } static reverse_iterator rend(node_pointer t) { return reverse_iterator(t, safe_size(t)); } static reverse_iterator kth_reverse_iterator(node_pointer t, size_type k) { return reverse_iterator::kth_iter(t, k); } static const_iterator cbegin(node_pointer t) { return ++const_iterator(t, -1); } static const_iterator cend(node_pointer t) { return const_iterator(t, safe_size(t)); } static const_iterator kth_const_iterator(node_pointer t, size_type k) { return const_iterator::kth_iter(t, k); } static const_reverse_iterator crbegin(node_pointer t) { return ++const_reverse_iterator(t, -1); } static const_reverse_iterator crend(node_pointer t) { return const_reverse_iterator(t, safe_size(t)); } static const_reverse_iterator kth_const_reverse_iterator(node_pointer t, size_type k) { return const_reverse_iterator::kth_iter(t, k); } }; } // namespace suisen::internal::implicit_treap namespace suisen { namespace internal::implicit_treap { template <typename T> struct DefaultNode: Node<T, DefaultNode<T>> { using base = Node<T, DefaultNode<T>>; using base::base; }; } template <typename T> class DynamicArray { using node_type = internal::implicit_treap::DefaultNode<T>; using node_pointer = typename node_type::node_pointer; node_pointer _root; struct node_pointer_construct {}; DynamicArray(node_pointer root, node_pointer_construct): _root(root) {} public: using value_type = typename node_type::value_type; DynamicArray(): _root(node_type::empty_node()) {} explicit DynamicArray(size_t n, const value_type& fill_value = {}): _root(node_type::build(n, fill_value)) {} template <typename U> DynamicArray(const std::vector<U>& dat) : _root(node_type::build(dat.begin(), dat.end())) {} void free() { node_type::delete_tree(_root); _root = node_type::empty_node(); } void clear() { free(); } static void reserve(size_t capacity) { node_type::reserve(capacity); } bool empty() const { return node_type::empty(_root); } int size() const { return node_type::safe_size(_root); } value_type& operator[](size_t k) { assert(k < size_t(size())); return node_type::get(_root, k); } const value_type& operator[](size_t k) const { assert(k < size_t(size())); return node_type::get(_root, k); } value_type& front() { return (*this)[0]; } value_type& back() { return (*this)[size() - 1]; } const value_type& front() const { return (*this)[0]; } const value_type& back() const { return (*this)[size() - 1]; } void insert(size_t k, const value_type& val) { assert(k <= size_t(size())); _root = node_type::insert(_root, k, val); } void push_front(const value_type& val) { _root = node_type::push_front(_root, val); } void push_back(const value_type& val) { _root = node_type::push_back(_root, val); } value_type erase(size_t k) { assert(k <= size_t(size())); value_type v; std::tie(_root, v) = node_type::erase(_root, k); return v; } value_type pop_front() { return erase(0); } value_type pop_back() { return erase(size() - 1); } DynamicArray split(size_t k) { assert(k <= size_t(size())); node_pointer root_r; std::tie(_root, root_r) = node_type::split(_root, k); return DynamicArray(root_r, node_pointer_construct{}); } void merge(DynamicArray r) { _root = node_type::merge(_root, r._root); } void rotate(size_t k) { assert(k <= size_t(size())); _root = node_type::rotate(_root, k); } void reverse(size_t l, size_t r) { assert(l <= r and r <= size_t(size())); if (r - l >= 2) _root = node_type::reverse(_root, l, r); } void reverse_all() { _root = node_type::reverse_all(_root); } std::vector<value_type> dump() const { return node_type::dump(_root); } // Returns the first i s.t. f(A[i]) = true by binary search. // Requirement: f(A[i]) is monotonic. template <typename Predicate> int binary_search_find_first(const Predicate& f) const { return node_type::binary_search(_root, f); } // comp(T t, U u) = (t < u) template <typename U, typename Compare = std::less<>> int lower_bound(const U& target, Compare comp = {}) const { return node_type::lower_bound(_root, target, comp); } // comp(T u, U t) = (u < t) template <typename U, typename Compare = std::less<>> int upper_bound(const U& target, Compare comp = {}) const { return node_type::upper_bound(_root, target, comp); } using iterator = typename node_type::iterator; using reverse_iterator = typename node_type::reverse_iterator; using const_iterator = typename node_type::const_iterator; using const_reverse_iterator = typename node_type::const_reverse_iterator; iterator begin() { return node_type::begin(_root); } iterator end() { return node_type::end(_root); } iterator kth_iterator(size_t k) { return node_type::kth_iterator(_root, k); } reverse_iterator rbegin() { return node_type::rbegin(_root); } reverse_iterator rend() { return node_type::rend(_root); } reverse_iterator kth_reverse_iterator(size_t k) { return node_type::kth_reverse_iterator(_root, k); } const_iterator begin() const { return cbegin(); } const_iterator end() const { return cend(); } const_iterator kth_iterator(size_t k) const { return kth_const_iterator(k); } const_reverse_iterator rbegin() const { return crbegin(); } const_reverse_iterator rend() const { return crend(); } const_reverse_iterator kth_reverse_iterator(size_t k) const { return kth_const_reverse_iterator(k); } const_iterator cbegin() const { return node_type::cbegin(_root); } const_iterator cend() const { return node_type::cend(_root); } const_iterator kth_const_iterator(size_t k) const { return node_type::kth_const_iterator(_root, k); } const_reverse_iterator crbegin() const { return node_type::crbegin(_root); } const_reverse_iterator crend() const { return node_type::crend(_root); } const_reverse_iterator kth_const_reverse_iterator(size_t k) const { return node_type::kth_const_reverse_iterator(_root, k); } }; } // namespace suisen int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int q, k; std::cin >> q >> k; using suisen::DynamicArray; DynamicArray<long long> a; while (q --> 0) { int t; std::cin >> t; if (t == 1) { long long v; std::cin >> v; a.insert(a.lower_bound(v), v); } else { if (a.size() < k) { std::cout << -1 << '\n'; } else { std::cout << a.erase(k - 1) << '\n'; } } } }