結果
| 問題 |
No.649 ここでちょっとQK!
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-02-04 02:25:48 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 145 ms / 3,000 ms |
| コード長 | 37,130 bytes |
| コンパイル時間 | 1,483 ms |
| コンパイル使用メモリ | 110,636 KB |
| 最終ジャッジ日時 | 2025-02-10 10:29:55 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 32 |
ソースコード
#define PROBLEM "https://yukicoder.me/problems/no/649"
#include <iostream>
#include <cassert>
#include <cstdint>
#include <optional>
#include <string>
#include <random>
#include <tuple>
#include <vector>
#include <utility>
namespace suisen::internal::implicit_treap {
template <typename T, typename Derived>
struct Node {
using random_engine = std::mt19937;
static inline random_engine rng{ 0 };
using node_type = Derived;
using node_pointer = uint32_t;
using priority_type = std::invoke_result_t<random_engine>;
using size_type = uint32_t;
using difference_type = int32_t;
using value_type = T;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
static inline std::vector<node_type> _nodes{};
static inline std::vector<node_pointer> _erased{};
static constexpr node_pointer null = ~node_pointer(0);
node_pointer _ch[2]{ null, null };
value_type _val;
size_type _size;
priority_type _priority;
node_pointer _prev = null, _next = null;
Node(const value_type val = {}): _val(val), _size(1), _priority(rng()) {}
static void reserve(size_type capacity) { _nodes.reserve(capacity); }
static bool is_null(node_pointer t) { return t == null; }
static bool is_not_null(node_pointer t) { return not is_null(t); }
static node_type& node(node_pointer t) { return _nodes[t]; }
static const node_type& const_node(node_pointer t) { return _nodes[t]; }
static value_type& value(node_pointer t) { return node(t)._val; }
static value_type set_value(node_pointer t, const value_type& new_val) { return std::exchange(value(t), new_val); }
static bool empty(node_pointer t) { return is_null(t); }
static size_type& size(node_pointer t) { return node(t)._size; }
static size_type safe_size(node_pointer t) { return empty(t) ? 0 : size(t); }
static priority_type priority(node_pointer t) { return const_node(t)._priority; }
static node_pointer& prev(node_pointer t) { return node(t)._prev; }
static node_pointer& next(node_pointer t) { return node(t)._next; }
static void link(node_pointer l, node_pointer r) { next(l) = r, prev(r) = l; }
static node_pointer min(node_pointer t) {
while (true) {
node_type::push(t);
node_pointer nt = child0(t);
if (is_null(nt)) return t;
t = nt;
}
}
static node_pointer max(node_pointer t) {
while (true) {
node_type::push(t);
node_pointer nt = child1(t);
if (is_null(nt)) return t;
t = nt;
}
}
static node_pointer& child0(node_pointer t) { return node(t)._ch[0]; }
static node_pointer& child1(node_pointer t) { return node(t)._ch[1]; }
static node_pointer& child(node_pointer t, bool b) { return node(t)._ch[b]; }
static node_pointer set_child0(node_pointer t, node_pointer cid) { return std::exchange(child0(t), cid); }
static node_pointer set_child1(node_pointer t, node_pointer cid) { return std::exchange(child1(t), cid); }
static node_pointer set_child(node_pointer t, bool b, node_pointer cid) { return std::exchange(child(t, b), cid); }
static node_pointer update(node_pointer t) { // t : not null
size(t) = safe_size(child0(t)) + safe_size(child1(t)) + 1;
return t;
}
static void push(node_pointer) {}
static node_pointer empty_node() { return null; }
template <typename ...Args>
static node_pointer create_node(Args &&...args) {
if (_erased.size()) {
node_pointer res = _erased.back();
_erased.pop_back();
node(res) = node_type(std::forward<Args>(args)...);
return res;
} else {
node_pointer res = _nodes.size();
_nodes.emplace_back(std::forward<Args>(args)...);
return res;
}
}
static void delete_node(node_pointer t) { _erased.push_back(t); }
static void delete_tree(node_pointer t) {
if (is_null(t)) return;
delete_tree(child0(t));
delete_tree(child1(t));
delete_node(t);
}
template <typename ...Args>
static node_pointer build(Args &&... args) {
node_pointer res = empty_node();
for (auto&& e : std::vector<value_type>(std::forward<Args>(args)...)) {
res = push_back(res, std::move(e));
}
return res;
}
static std::pair<node_pointer, node_pointer> split(node_pointer t, size_type k) {
if (k == 0) return { null, t };
if (k == size(t)) return { t, null };
static std::vector<node_pointer> lp{}, rp{};
while (true) {
node_type::push(t);
if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) {
if (rp.size()) set_child0(rp.back(), t);
rp.push_back(t);
if (k == lsiz) {
if (lp.size()) set_child1(lp.back(), child0(t));
node_pointer lt = set_child0(t, null), rt = null;
while (lp.size()) node_type::update(lt = lp.back()), lp.pop_back();
while (rp.size()) node_type::update(rt = rp.back()), rp.pop_back();
return { lt, rt };
}
t = child0(t);
} else {
if (lp.size()) set_child1(lp.back(), t);
lp.push_back(t);
t = child1(t);
k -= lsiz + 1;
}
}
}
static std::tuple<node_pointer, node_pointer, node_pointer> split(node_pointer t, size_type l, size_type r) {
auto [tlm, tr] = split(t, r);
auto [tl, tm] = split(tlm, l);
return { tl, tm, tr };
}
// Split immediately before the first element that satisfies the condition.
template <typename Predicate>
static std::pair<node_pointer, node_pointer> split_binary_search(node_pointer t, const Predicate& f) {
if (is_null(t)) {
return { null, null };
}
node_type::push(t);
if (f(value(t))) {
auto [l, tl] = split_binary_search(child0(t), f);
set_child0(t, tl);
return { l, node_type::update(t) };
} else {
auto [tr, r] = split_binary_search(child1(t), f);
set_child1(t, tr);
return { node_type::update(t), r };
}
}
template <typename Compare = std::less<>>
static std::pair<node_pointer, node_pointer> split_lower_bound(node_pointer t, const value_type& target, const Compare& comp) {
return split_binary_search(t, [&](const value_type& v) { return not comp(v, target); });
}
template <typename Compare = std::less<>>
static std::pair<node_pointer, node_pointer> split_upper_bound(node_pointer t, const value_type& target, const Compare& comp) {
return split_binary_search(t, [&](const value_type& v) { return comp(target, v); });
}
static node_pointer merge_impl(node_pointer tl, node_pointer tr) {
if (priority(tl) < priority(tr)) {
node_type::push(tr);
if (node_pointer tm = child0(tr); is_null(tm)) {
link(max(tl), tr);
set_child0(tr, tl);
} else {
set_child0(tr, merge(tl, tm));
}
return node_type::update(tr);
} else {
node_type::push(tl);
if (node_pointer tm = child1(tl); is_null(tm)) {
link(tl, min(tr));
set_child1(tl, tr);
} else {
set_child1(tl, merge(tm, tr));
}
return node_type::update(tl);
}
}
static node_pointer merge(node_pointer tl, node_pointer tr) {
if (is_null(tl)) return tr;
if (is_null(tr)) return tl;
return merge_impl(tl, tr);
}
static node_pointer merge(node_pointer tl, node_pointer tm, node_pointer tr) {
return merge(merge(tl, tm), tr);
}
static node_pointer insert_impl(node_pointer t, size_type k, node_pointer new_node) {
if (is_null(t)) return new_node;
static std::vector<node_pointer> st;
bool b = false;
while (true) {
if (is_null(t) or priority(new_node) > priority(t)) {
if (is_null(t)) {
t = new_node;
} else {
auto [tl, tr] = split(t, k);
if (is_not_null(tl)) link(max(tl), new_node);
if (is_not_null(tr)) link(new_node, min(tr));
set_child0(new_node, tl);
set_child1(new_node, tr);
t = node_type::update(new_node);
}
if (st.size()) {
set_child(st.back(), b, t);
do t = node_type::update(st.back()), st.pop_back(); while (st.size());
}
return t;
} else {
node_type::push(t);
if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) {
if (k == lsiz) link(new_node, t);
st.push_back(t), b = false;
t = child0(t);
} else {
if (k == lsiz + 1) link(t, new_node);
st.push_back(t), b = true;
t = child1(t);
k -= lsiz + 1;
}
}
}
}
template <typename ...Args>
static node_pointer insert(node_pointer t, size_type k, Args &&...args) {
return insert_impl(t, k, create_node(std::forward<Args>(args)...));
}
template <typename ...Args>
static node_pointer push_front(node_pointer t, Args &&...args) {
return insert(t, 0, std::forward<Args>(args)...);
}
template <typename ...Args>
static node_pointer push_back(node_pointer t, Args &&...args) {
return insert(t, safe_size(t), std::forward<Args>(args)...);
}
// Insert a new node immediately before the first element that satisfies the condition.
// Returns { node, position to insert }
template <typename Predicate>
static std::pair<node_pointer, size_type> insert_binary_search_impl(node_pointer t, const Predicate& f, node_pointer new_node) {
if (is_null(t)) {
return { new_node, 0 };
}
if (priority(new_node) > priority(t)) {
auto [tl, tr] = split_binary_search(t, f);
if (is_not_null(tl)) link(max(tl), t);
if (is_not_null(tr)) link(min(tr), t);
set_child0(new_node, tl);
set_child1(new_node, tr);
return { node_type::update(new_node), safe_size(tl) };
} else {
node_type::push(t);
if (f(value(t))) {
auto [c0, pos] = insert_binary_search_impl(child0(t), f, new_node);
set_child0(t, c0);
if (is_null(next(new_node))) link(new_node, t);
return { node_type::update(t), pos };
} else {
auto [c1, pos] = insert_binary_search_impl(child1(t), f, new_node);
set_child1(t, c1);
if (is_null(prev(new_node))) link(t, new_node);
return { node_type::update(t), pos + safe_size(child0(t)) + 1 };
}
}
}
template <typename Predicate, typename ...Args>
static std::pair<node_pointer, size_type> insert_binary_search(node_pointer t, const Predicate& f, Args &&...args) {
return insert_binary_search_impl(t, f, create_node(std::forward<Args>(args)...));
}
template <typename Compare = std::less<>>
static std::pair<node_pointer, size_type> insert_lower_bound(node_pointer t, const value_type& v, Compare comp) {
return insert_binary_search(t, [&](const value_type& x) { return not comp(x, v); }, v);
}
template <typename Compare = std::less<>>
static std::pair<node_pointer, size_type> insert_upper_bound(node_pointer t, const value_type& v, Compare comp) {
return insert_binary_search(t, [&](const value_type& x) { return comp(v, x); }, v);
}
static std::pair<node_pointer, value_type> erase(node_pointer t, size_type k) {
node_type::push(t);
if (const size_type lsiz = safe_size(child0(t)); k == lsiz) {
delete_node(t);
return { merge(child0(t), child1(t)), std::move(value(t)) };
} else if (k < lsiz) {
auto [c0, v] = erase(child0(t), k);
set_child0(t, c0);
if (is_not_null(c0) and k == lsiz - 1) link(max(c0), t);
return { node_type::update(t), std::move(v) };
} else {
auto [c1, v] = erase(child1(t), k - (lsiz + 1));
set_child1(t, c1);
if (is_not_null(c1) and k == lsiz + 1) link(t, min(c1));
return { node_type::update(t), std::move(v) };
}
}
static std::pair<node_pointer, value_type> pop_front(node_pointer t) { return erase(t, 0); }
static std::pair<node_pointer, value_type> pop_back(node_pointer t) { return erase(t, safe_size(t) - 1); }
// Erase the first element that satisfies the condition f if it also satisfies the condition g.
// returns { node, optional(position, value) }
template <typename Predicate, typename RemovePredicate>
static std::pair<node_pointer, std::optional<std::pair<size_type, value_type>>> erase_binary_search(node_pointer t, const Predicate& f, const RemovePredicate& g) {
if (is_null(t)) return { null, std::nullopt };
node_type::push(t);
if (f(value(t))) {
auto [c0, erased] = erase_binary_search(child0(t), f, g);
if (erased) {
set_child0(t, c0);
size_type& pos = erased->first;
if (is_not_null(c0) and pos == safe_size(c0)) link(max(c0), t);
return { node_type::update(t), std::move(erased) };
} else if (g(value(t))) {
delete_node(t);
std::pair<size_type, value_type> erased_entry{ safe_size(child0(t)), std::move(value(t)) };
return { merge(child0(t), child1(t)), std::move(erased_entry) };
} else {
return { t, std::nullopt };
}
} else {
auto [c1, erased] = erase_binary_search(child1(t), f, g);
if (erased) {
set_child1(t, c1);
size_type& pos = erased->first;
if (is_not_null(c1) and pos == 0) link(t, min(c1));
pos += safe_size(child0(t)) + 1;
return { node_type::update(t), std::move(erased) };
} else {
return { t, std::nullopt };
}
}
}
template <typename Compare = std::less<>>
static std::pair<node_pointer, std::optional<std::pair<size_type, value_type>>> erase_lower_bound(node_pointer t, const value_type& v, Compare comp) {
return erase_binary_search(
t,
[&](const value_type& x) { return not comp(x, v); },
[] { return true; }
);
}
template <typename Compare = std::less<>>
static std::pair<node_pointer, std::optional<std::pair<size_type, value_type>>> erase_upper_bound(node_pointer t, const value_type& v, Compare comp) {
return erase_binary_search(
t,
[&](const value_type& x) { return comp(v, x); },
[] { return true; }
);
}
template <typename Compare = std::less<>>
static std::pair<node_pointer, std::optional<std::pair<size_type, value_type>>> erase_if_exists(node_pointer t, const value_type& v, Compare comp) {
return erase_binary_search(
t,
[&](const value_type& x) { return not comp(x, v); },
[&](const value_type& x) { return not comp(v, x); }
);
}
static node_pointer rotate(node_pointer t, size_type k) {
auto [tl, tr] = split(t, k);
return merge(tr, tl);
}
static node_pointer rotate(node_pointer t, size_type l, size_type m, size_type r) {
auto [tl, tm, tr] = split(t, l, r);
return merge(tl, rotate(tm, m - l), tr);
}
static value_type& get(node_pointer t, size_type k) {
while (true) {
node_type::push(t);
if (const size_type lsiz = safe_size(child0(t)); k == lsiz) {
return value(t);
} else if (k < lsiz) {
t = child0(t);
} else {
k -= lsiz + 1;
t = child1(t);
}
}
}
template <typename Func>
static node_pointer set_update(node_pointer t, size_type k, const Func& f) {
node_type::push(t);
if (const size_type lsiz = safe_size(child0(t)); k == lsiz) {
value_type& val = value(t);
val = f(const_cast<const value_type&>(val));
} else if (k < lsiz) {
set_child0(t, set_update(child0(t), k, f));
} else {
set_child1(t, set_update(child1(t), k - (lsiz + 1), f));
}
return node_type::update(t);
}
static std::vector<value_type> dump(node_pointer t) {
std::vector<value_type> res;
res.reserve(safe_size(t));
auto rec = [&](auto rec, node_pointer t) -> void {
if (is_null(t)) return;
node_type::push(t);
rec(rec, child0(t));
res.push_back(value(t));
rec(rec, child1(t));
};
rec(rec, t);
return res;
}
// Find the first element that satisfies the condition f : (value, index) -> { false, true }.
// Returns { optional(value), position }
template <typename Predicate>
static std::pair<size_type, std::optional<value_type>> binary_search(node_pointer t, const Predicate& f) {
node_pointer res = null;
int ng = -1, ok = safe_size(t);
while (ok - ng > 1) {
node_type::push(t);
if (const int root = ng + safe_size(child0(t)) + 1; f(value(t), root)) {
res = t;
ok = root, t = child0(t);
} else {
ng = root, t = child1(t);
}
}
if (is_null(res)) {
return { ok, std::nullopt };
} else {
return { ok, value(res) };
}
}
// comp(T t, U u) = (t < u)
template <typename U, typename Compare = std::less<>>
static std::pair<size_type, std::optional<value_type>> lower_bound(node_pointer t, const U& target, Compare comp) {
return binary_search(t, [&](const value_type& v, int) { return not comp(v, target); });
}
// comp(T u, U t) = (u < t)
template <typename U, typename Compare = std::less<>>
static std::pair<size_type, std::optional<value_type>> upper_bound(node_pointer t, const U& target, Compare comp) {
return binary_search(t, [&](const value_type& v, int) { return comp(target, v); });
}
template <bool reversed_, bool constant_>
struct NodeIterator {
static constexpr bool constant = constant_;
static constexpr bool reversed = reversed_;
using difference_type = Node::difference_type;
using value_type = Node::value_type;
using pointer = std::conditional_t<constant, Node::const_pointer, Node::pointer>;
using reference = std::conditional_t<constant, Node::const_reference, Node::reference>;
using iterator_cateogory = std::random_access_iterator_tag;
NodeIterator(): root(null), index(0) {}
reference operator*() {
if (is_null(cur) and index != safe_size(root)) {
cur = root;
for (size_type k = index;;) {
node_type::push(cur);
if (size_type siz = safe_size(child(cur, reversed)); k == siz) {
break;
} else if (k < siz) {
cur = child(cur, reversed);
} else {
cur = child(cur, not reversed);
k -= siz + 1;
}
}
}
return value(cur);
}
reference operator[](difference_type k) const { return *((*this) + k); }
NodeIterator& operator++() { return *this += 1; }
NodeIterator& operator--() { return *this -= 1; }
NodeIterator& operator+=(difference_type k) { return suc(+k), * this; }
NodeIterator& operator-=(difference_type k) { return suc(-k), * this; }
NodeIterator operator++(int) { NodeIterator res = *this; ++(*this); return res; }
NodeIterator operator--(int) { NodeIterator res = *this; --(*this); return res; }
friend NodeIterator operator+(NodeIterator it, difference_type k) { return it += k; }
friend NodeIterator operator+(difference_type k, NodeIterator it) { return it += k; }
friend NodeIterator operator-(NodeIterator it, difference_type k) { return it -= k; }
friend difference_type operator-(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index - rhs.index; }
friend bool operator==(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index == rhs.index; }
friend bool operator!=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index != rhs.index; }
friend bool operator<(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index < rhs.index; }
friend bool operator>(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index > rhs.index; }
friend bool operator<=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index <= rhs.index; }
friend bool operator>=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index >= rhs.index; }
static NodeIterator begin(node_pointer root) { return NodeIterator(root, 0); }
static NodeIterator end(node_pointer root) { return NodeIterator(root, safe_size(root)); }
private:
node_pointer root;
size_type index;
node_pointer cur = null; // it==end() or uninitialized (updates only index)
NodeIterator(node_pointer root, size_type index): root(root), index(index) {}
void suc(difference_type k) {
index += k;
if (index == safe_size(root) or std::abs(k) >= 10) cur = null;
if (is_null(cur)) return;
const bool positive = k < 0 ? (k = -k, reversed) : not reversed;
if (positive) {
while (k-- > 0) cur = next(cur);
} else {
while (k-- > 0) cur = prev(cur);
}
}
};
using iterator = NodeIterator<false, false>;
using reverse_iterator = NodeIterator<true, false>;
using const_iterator = NodeIterator<false, true>;
using const_reverse_iterator = NodeIterator<true, true>;
static iterator begin(node_pointer t) { return iterator::begin(t); }
static iterator end(node_pointer t) { return iterator::end(t); }
static reverse_iterator rbegin(node_pointer t) { return reverse_iterator::begin(t); }
static reverse_iterator rend(node_pointer t) { return reverse_iterator::end(t); }
static const_iterator cbegin(node_pointer t) { return const_iterator::begin(t); }
static const_iterator cend(node_pointer t) { return const_iterator::end(t); }
static const_reverse_iterator crbegin(node_pointer t) { return const_reverse_iterator::begin(t); }
static const_reverse_iterator crend(node_pointer t) { return const_reverse_iterator::end(t); }
};
} // namespace suisen::internal::implicit_treap
namespace suisen {
namespace internal::implicit_treap {
template <typename T>
struct DefaultNode: Node<T, DefaultNode<T>> {
using base = Node<T, DefaultNode<T>>;
using base::base;
};
}
template <typename T>
class DynamicArray {
using node_type = internal::implicit_treap::DefaultNode<T>;
using node_pointer = typename node_type::node_pointer;
node_pointer _root;
struct node_pointer_construct {};
DynamicArray(node_pointer root, node_pointer_construct): _root(root) {}
public:
using value_type = typename node_type::value_type;
DynamicArray(): _root(node_type::empty_node()) {}
explicit DynamicArray(size_t n, const value_type& fill_value = {}): _root(node_type::build(n, fill_value)) {}
template <typename U>
DynamicArray(const std::vector<U>& dat) : _root(node_type::build(dat.begin(), dat.end())) {}
void free() {
node_type::delete_tree(_root);
_root = node_type::empty_node();
}
void clear() { free(); }
static void reserve(size_t capacity) { node_type::reserve(capacity); }
bool empty() const { return node_type::empty(_root); }
int size() const { return node_type::safe_size(_root); }
value_type& operator[](size_t k) {
assert(k < size_t(size()));
return node_type::get(_root, k);
}
const value_type& operator[](size_t k) const {
assert(k < size_t(size()));
return node_type::get(_root, k);
}
value_type& front() { return (*this)[0]; }
value_type& back() { return (*this)[size() - 1]; }
const value_type& front() const { return (*this)[0]; }
const value_type& back() const { return (*this)[size() - 1]; }
void insert(size_t k, const value_type& val) {
assert(k <= size_t(size()));
_root = node_type::insert(_root, k, val);
}
void push_front(const value_type& val) { _root = node_type::push_front(_root, val); }
void push_back(const value_type& val) { _root = node_type::push_back(_root, val); }
// Insert a new value immediately before the first element that satisfies the condition f.
// Returns: the inserted position
// Requirements: f(A[i]) must be monotonic
template <typename Predicate>
int insert_binary_search(const value_type& val, const Predicate &f) {
int pos;
std::tie(_root, pos) = node_type::insert_binary_search(_root, f, val);
return pos;
}
// Insert a new value immediately before the first element that is greater than or equal to the new value.
// Returns: the inserted position
// Requirements: sequence is sorted
template <typename Compare = std::less<>>
int insert_lower_bound(const value_type& val, const Compare &comp = {}) {
int pos;
std::tie(_root, pos) = node_type::insert_lower_bound(_root, val, comp);
return pos;
}
// Insert a new value immediately before the first element that is greater than the new value.
// Returns: the inserted position
// Requirements: sequence is sorted
template <typename Compare = std::less<>>
int insert_upper_bound(const value_type& val, const Compare &comp = {}) {
int pos;
std::tie(_root, pos) = node_type::insert_upper_bound(_root, val, comp);
return pos;
}
value_type erase(size_t k) {
assert(k <= size_t(size()));
value_type v;
std::tie(_root, v) = node_type::erase(_root, k);
return v;
}
value_type pop_front() { return erase(0); }
value_type pop_back() { return erase(size() - 1); }
// Erase the first element that satisfies the condition f if it also satisfies the condition g.
// returns optional(position, value)
// Requirements: sequence is sorted
template <typename Predicate, typename RemovePredicate>
std::optional<std::pair<int, value_type>> erase_binary_search(const Predicate &f, const RemovePredicate& g) {
auto [root, erased] = node_type::erase_binary_search(_root, f, g);
_root = root;
if (erased) {
return std::pair<int, value_type>{ erased->first, erased->second };
} else {
return std::nullopt;
}
}
// Erase the first element that is greater than or equal to val.
// returns optional(position, value)
// Requirements: sequence is sorted
template <typename Compare = std::less<>>
std::optional<std::pair<int, value_type>> erase_lower_bound(const value_type &val, const Compare &comp = {}) {
auto [root, erased] = node_type::erase_lower_bound(_root, val, comp);
_root = root;
if (erased) {
return std::pair<int, value_type>{ erased->first, erased->second };
} else {
return std::nullopt;
}
}
// Erase the first element that is greater than val.
// returns optional(position, value)
// Requirements: sequence is sorted
template <typename Compare = std::less<>>
std::optional<std::pair<int, value_type>> erase_upper_bound(const value_type &val, const Compare &comp = {}) {
auto [root, erased] = node_type::erase_upper_bound(_root, val, comp);
_root = root;
if (erased) {
return std::pair<int, value_type>{ erased->first, erased->second };
} else {
return std::nullopt;
}
}
// Erase the first element that is equal to val.
// returns optional(position, value)
// Requirements: sequence is sorted
template <typename Compare = std::less<>>
std::optional<std::pair<int, value_type>> erase_if_exists(const value_type &val, const Compare &comp = {}) {
auto [root, erased] = node_type::erase_if_exists(_root, val, comp);
_root = root;
if (erased) {
return std::pair<int, value_type>{ erased->first, erased->second };
} else {
return std::nullopt;
}
}
// Split immediately before the k-th element.
DynamicArray split(size_t k) {
assert(k <= size_t(size()));
node_pointer root_r;
std::tie(_root, root_r) = node_type::split(_root, k);
return DynamicArray(root_r, node_pointer_construct{});
}
// Split immediately before the first element that satisfies the condition.
// Requirements: f(A[i]) must be monotonic
template <typename Predicate>
DynamicArray split_binary_search(const Predicate &f) {
node_pointer root_r;
std::tie(_root, root_r) = node_type::split_binary_search(_root, f);
return DynamicArray(root_r, node_pointer_construct{});
}
// Split immediately before the first element that is greater than or equal to val.
// Requirements: sequence is sorted
template <typename Compare = std::less<>>
DynamicArray split_lower_bound(const value_type &val, const Compare &comp = {}) {
node_pointer root_r;
std::tie(_root, root_r) = node_type::split_lower_bound(_root, val, comp);
return DynamicArray(root_r, node_pointer_construct{});
}
// Split immediately before the first element that is greater than val.
// Requirements: sequence is sorted
template <typename Compare = std::less<>>
DynamicArray split_upper_bound(const value_type &val, const Compare &comp = {}) {
node_pointer root_r;
std::tie(_root, root_r) = node_type::split_upper_bound(_root, val, comp);
return DynamicArray(root_r, node_pointer_construct{});
}
void merge(DynamicArray r) { _root = node_type::merge(_root, r._root); }
void rotate(size_t k) {
assert(k <= size_t(size()));
_root = node_type::rotate(_root, k);
}
void rotate(size_t l, size_t m, size_t r) {
assert(l <= m and m <= r and r <= size_t(size()));
_root = node_type::rotate(_root, l, m, r);
}
std::vector<value_type> dump() const { return node_type::dump(_root); }
// Find the first element that satisfies the condition f.
// Returns { position, optional(value) }
// Requirements: f(A[i]) must be monotonic
template <typename Predicate>
std::pair<int, std::optional<value_type>> binary_search(const Predicate& f) const {
auto [pos, val] = node_type::binary_search(_root, f);
return { pos, std::move(val) };
}
// comp(T t, U u) = (t < u)
// Requirements: sequence is sorted
template <typename U, typename Compare = std::less<>>
std::pair<int, std::optional<value_type>> lower_bound(const U& target, Compare comp = {}) const {
auto [pos, val] = node_type::lower_bound(_root, target, comp);
return { pos, std::move(val) };
}
// comp(T u, U t) = (u < t)
// Requirements: sequence is sorted
template <typename U, typename Compare = std::less<>>
std::pair<int, std::optional<value_type>> upper_bound(const U& target, Compare comp = {}) const {
auto [pos, val] = node_type::upper_bound(_root, target, comp);
return { pos, std::move(val) };
}
using iterator = typename node_type::iterator;
using reverse_iterator = typename node_type::reverse_iterator;
using const_iterator = typename node_type::const_iterator;
using const_reverse_iterator = typename node_type::const_reverse_iterator;
iterator begin() { return node_type::begin(_root); }
iterator end() { return node_type::end(_root); }
reverse_iterator rbegin() { return node_type::rbegin(_root); }
reverse_iterator rend() { return node_type::rend(_root); }
const_iterator begin() const { return cbegin(); }
const_iterator end() const { return cend(); }
const_reverse_iterator rbegin() const { return crbegin(); }
const_reverse_iterator rend() const { return crend(); }
const_iterator cbegin() const { return node_type::cbegin(_root); }
const_iterator cend() const { return node_type::cend(_root); }
const_reverse_iterator crbegin() const { return node_type::crbegin(_root); }
const_reverse_iterator crend() const { return node_type::crend(_root); }
};
} // namespace suisen
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int q, k;
std::cin >> q >> k;
using suisen::DynamicArray;
DynamicArray<long long> a;
while (q-- > 0) {
int t;
std::cin >> t;
if (t == 1) {
long long v;
std::cin >> v;
a.insert_lower_bound(v);
} else {
if (a.size() < k) {
std::cout << -1 << '\n';
} else {
std::cout << a.erase(k - 1) << '\n';
}
}
}
}