結果
| 問題 |
No.2218 Multiple LIS
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-02-17 22:08:26 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,618 bytes |
| コンパイル時間 | 1,604 ms |
| コンパイル使用メモリ | 134,004 KB |
| 最終ジャッジ日時 | 2025-02-10 16:54:35 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 14 WA * 25 |
ソースコード
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdint>
#include <cstring>
#include <ctime>
#include <deque>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <unordered_map>
#include <unordered_set>
using namespace std;
template <int mod>
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt &operator^=(long long p) { // quick_pow here:3
ModInt res = 1;
for (; p; p >>= 1) {
if (p & 1) res *= *this;
*this *= *this;
}
return *this = res;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
ModInt operator^(long long p) const { return ModInt(*this) ^= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
explicit operator int() const { return x; } // added by QCFium
ModInt operator=(const int p) {
x = p;
return ModInt(*this);
} // added by QCFium
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
std::swap(a, b);
u -= t * v;
std::swap(u, v);
}
return ModInt(u);
}
friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &p) {
return os << p.x;
}
friend std::istream &operator>>(std::istream &is, ModInt<mod> &a) {
long long x;
is >> x;
a = ModInt<mod>(x);
return (is);
}
};
long long mod_pow(long long x, int n, int p) {
long long ret = 1;
while (n) {
/*
∧,,,∧
( ̳• · • ̳)
/ づ♡ I love you
*/
if (n & 1) (ret *= x) %= p;
(x *= x) %= p;
n >>= 1;
}
return ret;
}
std::pair<std::vector<long long>, std::vector<int>> get_prime_factor_with_kinds(
long long n) {
std::vector<long long> prime_factors;
std::vector<int> cnt; // number of i_th factor
for (long long i = 2; i <= sqrt(n); i++) {
if (n % i == 0) {
prime_factors.push_back(i);
cnt.push_back(0);
while (n % i == 0) n /= i, cnt[(int)prime_factors.size() - 1]++;
}
}
if (n > 1) prime_factors.push_back(n), cnt.push_back(1);
assert(prime_factors.size() == cnt.size());
return {prime_factors, cnt};
}
using mint = ModInt<1000000007>;
// using mint = ModInt<998244353>;
void solve() {
int n;
std::cin >> n;
std::vector<int> nums(n);
for (int &x : nums) std::cin >> x;
std::vector<int> dp;
for (int x : nums) {
if (dp.empty() || x % dp.back() == 0)
dp.push_back(x);
else if (dp.back() % x == 0) {
auto it = std::lower_bound(dp.begin(), dp.end(), x);
*it = x;
}
}
std::cout << dp.size() << '\n';
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int t = 1;
while (t--) solve();
return 0;
}