結果

問題 No.3022 一元一次式 mod 1000000000
ユーザー 👑 p-adic
提出日時 2023-02-23 18:13:40
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 80 ms / 2,000 ms
コード長 2,591 bytes
コンパイル時間 901 ms
コンパイル使用メモリ 76,604 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2025-02-17 12:56:01
合計ジャッジ時間 2,062 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#include <iostream>
#include <string>
#include <stdio.h>
#include <stdint.h>
#include <cassert>
using namespace std;
using ll = long long;
#define MAIN main
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
int MAIN()
{
UNTIE;
CEXPR( ll , bound_T , 100000 );
CIN_ASSERT( T , 1 , bound_T );
CEXPR( ll , bound_NM , 1000000000000000000 );
CEXPR( ll , mod_max , 1000000000 );
CEXPR( int , exponent , 400000000 - 1 );
constexpr ll p[2] = { 2 , 5 };
REPEAT( T ){
CIN_ASSERT( N , 1 , bound_NM );
CIN_ASSERT( M , 1 , bound_NM );
ll mod = mod_max;
bool solvable = true;
FOR( i , 0 , 2 ){
const ll& pi = p[i];
REPEAT( 9 ){
if( N % pi == 0 ){
if( M % pi == 0 ){
N /= pi;
M /= pi;
mod /= pi;
} else {
solvable = false;
break;
}
} else {
break;
}
}
if( ! solvable ){
break;
}
}
if( solvable ){
POWER_MOD( inv_N , N , exponent , mod );
ll n = ( inv_N * ( mod - ( M % mod ) ) ) % mod;
if( n == 0 ){
n = mod;
}
COUT( n );
} else {
COUT( -1 );
}
}
QUIT;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0