結果

問題 No.1340 おーじ君をさがせ
ユーザー T101010101
提出日時 2023-03-08 11:54:53
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,741 ms / 2,000 ms
コード長 5,787 bytes
コンパイル時間 2,537 ms
コンパイル使用メモリ 257,156 KB
最終ジャッジ日時 2025-02-11 06:48:16
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 59
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma region Macros
// #pragma GCC target("avx,avx2,fma")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
// #pragma GCC target("avx,avx2,fma,sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,tune=native")
#include <bits/extc++.h>
// #include <bits/stdc++.h>
using namespace std;
using namespace __gnu_pbds;
// using namespace __gnu_cxx;
// #include <atcoder/fenwicktree>
// #include <atcoder/segtree>
// #include <atcoder/maxflow>
// #include <atcoder/all>
// using namespace atcoder;
// #include <boost/multiprecision/cpp_int.hpp>
// namespace mp = boost::multiprecision;
// using Bint = mp::cpp_int;
#define TO_STRING(var) # var
#define pb emplace_back
#define int ll
#define endl '\n'
using ll = long long;
using ld = long double;
const ld PI = acos(-1);
const ld EPS = 1e-10;
const ll INFL = 1LL << 61;
// const int MOD = 998244353;
const int MOD = 1000000007;
__attribute__((constructor))
void constructor() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
}
class UnionFind {
public:
UnionFind() = default;
UnionFind(int n) : par(n),
sz(n, 1) { iota(par.begin(), par.end(), 0); }
int root(int x) {
if (par[x] == x) return x;
return (par[x] = root(par[x]));
}
bool unite(int x, int y) {
int rx = root(x);
int ry = root(y);
if (rx == ry) return false;
if (sz[rx] < sz[ry]) swap(rx, ry); // union by size
sz[rx] += sz[ry];
par[ry] = rx;
return true;
}
bool issame(int x, int y) {
return (root(x) == root(y));
}
int size(int x) {
return sz[root(x)];
}
vector<vector<int>> groups(int n) {
vector<vector<int>> G(n);
for (int x = 0; x < n; x++) {
G[root(x)].push_back(x);
}
G.erase(
remove_if(G.begin(), G.end(),
[&](const vector<int>& v) { return v.empty(); }),
G.end());
return G;
}
private:
vector<int> par;
vector<int> sz;
};
template<int mod> class modint{
public:
int val = 0;
modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }
modint(const modint &r) { val = r.val; } //
modint operator -(){ return modint(-val); } //
modint operator +(const modint &r) { return modint(*this) += r; }
modint operator -(const modint &r) { return modint(*this) -= r; }
modint operator *(const modint &r) { return modint(*this) *= r; }
modint operator /(const modint &r) { return modint(*this) /= r; }
modint &operator +=(const modint &r) {
val += r.val;
if (val >= mod) val -= mod;
return *this;
}
modint &operator -=(const modint &r) {
if (val < r.val) val += mod;
val -= r.val;
return *this;
}
modint &operator *=(const modint &r) {
val = val * r.val % mod;
return *this;
}
modint &operator /=(const modint &r) {
int a = r.val, b = mod, u = 1, v = 0;
while (b) {
int t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
val = val * u % mod;
if (val < 0) val += mod;
return *this;
}
bool operator ==(const modint& r) { return this -> val == r.val; }
bool operator <(const modint& r) { return this -> val < r.val; }
bool operator !=(const modint& r) { return this -> val != r.val; }
};
using mint = modint<MOD>;
istream &operator >>(istream &is, mint& x) {
int t; is >> t;
x = t;
return (is);
}
ostream &operator <<(ostream &os, const mint& x) {
return os << x.val;
}
mint modpow(const mint &a, int n) {
if (n == 0) return 1;
mint t = modpow(a, n / 2);
t = t * t;
if (n & 1) t = t * a;
return t;
}
int modpow(int x, int N, int mod) {
int ret = 1;
while (N > 0) {
if (N % 2 == 1) ret = ret * x % mod;
x = x * x % mod;
N /= 2;
}
return ret;
}
int ceil(int x, int y) { return (x > 0 ? (x + y - 1) / y : x / y); }
#pragma endregion
typedef vector<vector<int>> Matrix;
// nkAkmBnmCO(N^3)
Matrix Mul(const Matrix &A, const Matrix &B, int MOD) {
assert(A[0].size() == B.size());
Matrix C(A.size(), vector<int> (B[0].size()));
for (int i = 0; i < A.size(); i++) {
for (int k = 0; k < B.size(); k++) {
for (int j = 0; j < B[0].size(); j++) {
C[i][j] += A[i][k] * B[k][j];
C[i][j] %= MOD;
}
}
}
return C;
}
// NAKO(N^3 log K)
Matrix Pow(Matrix A, int K, int MOD) {
assert(A.size() == A[0].size());
Matrix B(A.size(), vector<int> (A.size()));
for (int i = 0; i < A.size(); i++) {
B[i][i] = 1;
}
while (K > 0) {
if (K & 1) B = Mul(B, A, MOD);
A = Mul(A, A, MOD);
K >>= 1;
}
return B;
}
void PrintMatrix(const Matrix &A) {
int h = A.size(), w = A[0].size();
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
cout << A[i][j] << ' ';
}
cout << endl;
}
}
signed main() {
int N, M, T;
cin >> N >> M >> T;
vector<vector<int>> A(N, vector<int>(N));
for (int i = 0; i < M; i++) {
int u, v;
cin >> u >> v;
// u--; v--;
A[u][v] = 1;
}
Matrix P = Pow(A, T, MOD);
int ans1 = 0;
for (int i = 0; i < N; i++) {
ans1 += (P[0][i] > 0);
}
// Matrix P2 = Pow(A, T, MOD2);
// int ans2 = 0;
// for (int i = 0; i < N; i++) {
// ans2 += (P2[0][i] > 0);
// }
Matrix P3 = Pow(A, T, 82589933LL);
int ans3 = 0;
for (int i = 0; i < N; i++) {
ans3 += (P3[0][i] > 0);
}
cout << max(ans1, ans3) << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0