結果
問題 | No.1340 おーじ君をさがせ |
ユーザー |
|
提出日時 | 2023-03-08 11:54:53 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,741 ms / 2,000 ms |
コード長 | 5,787 bytes |
コンパイル時間 | 2,537 ms |
コンパイル使用メモリ | 257,156 KB |
最終ジャッジ日時 | 2025-02-11 06:48:16 |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 59 |
ソースコード
#pragma region Macros// #pragma GCC target("avx,avx2,fma")// #pragma GCC optimize("O3")// #pragma GCC optimize("unroll-loops")// #pragma GCC target("avx,avx2,fma,sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,tune=native")#include <bits/extc++.h>// #include <bits/stdc++.h>using namespace std;using namespace __gnu_pbds;// using namespace __gnu_cxx;// #include <atcoder/fenwicktree>// #include <atcoder/segtree>// #include <atcoder/maxflow>// #include <atcoder/all>// using namespace atcoder;// #include <boost/multiprecision/cpp_int.hpp>// namespace mp = boost::multiprecision;// using Bint = mp::cpp_int;#define TO_STRING(var) # var#define pb emplace_back#define int ll#define endl '\n'using ll = long long;using ld = long double;const ld PI = acos(-1);const ld EPS = 1e-10;const ll INFL = 1LL << 61;// const int MOD = 998244353;const int MOD = 1000000007;__attribute__((constructor))void constructor() {ios::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(15);}class UnionFind {public:UnionFind() = default;UnionFind(int n) : par(n),sz(n, 1) { iota(par.begin(), par.end(), 0); }int root(int x) {if (par[x] == x) return x;return (par[x] = root(par[x]));}bool unite(int x, int y) {int rx = root(x);int ry = root(y);if (rx == ry) return false;if (sz[rx] < sz[ry]) swap(rx, ry); // union by sizesz[rx] += sz[ry];par[ry] = rx;return true;}bool issame(int x, int y) {return (root(x) == root(y));}int size(int x) {return sz[root(x)];}vector<vector<int>> groups(int n) {vector<vector<int>> G(n);for (int x = 0; x < n; x++) {G[root(x)].push_back(x);}G.erase(remove_if(G.begin(), G.end(),[&](const vector<int>& v) { return v.empty(); }),G.end());return G;}private:vector<int> par;vector<int> sz;};template<int mod> class modint{public:int val = 0;modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }modint(const modint &r) { val = r.val; } // コピーコンストラクタmodint operator -(){ return modint(-val); } // 単項modint operator +(const modint &r) { return modint(*this) += r; }modint operator -(const modint &r) { return modint(*this) -= r; }modint operator *(const modint &r) { return modint(*this) *= r; }modint operator /(const modint &r) { return modint(*this) /= r; }modint &operator +=(const modint &r) {val += r.val;if (val >= mod) val -= mod;return *this;}modint &operator -=(const modint &r) {if (val < r.val) val += mod;val -= r.val;return *this;}modint &operator *=(const modint &r) {val = val * r.val % mod;return *this;}modint &operator /=(const modint &r) {int a = r.val, b = mod, u = 1, v = 0;while (b) {int t = a / b;a -= t * b; swap(a, b);u -= t * v; swap(u, v);}val = val * u % mod;if (val < 0) val += mod;return *this;}bool operator ==(const modint& r) { return this -> val == r.val; }bool operator <(const modint& r) { return this -> val < r.val; }bool operator !=(const modint& r) { return this -> val != r.val; }};using mint = modint<MOD>;istream &operator >>(istream &is, mint& x) {int t; is >> t;x = t;return (is);}ostream &operator <<(ostream &os, const mint& x) {return os << x.val;}mint modpow(const mint &a, int n) {if (n == 0) return 1;mint t = modpow(a, n / 2);t = t * t;if (n & 1) t = t * a;return t;}int modpow(int x, int N, int mod) {int ret = 1;while (N > 0) {if (N % 2 == 1) ret = ret * x % mod;x = x * x % mod;N /= 2;}return ret;}int ceil(int x, int y) { return (x > 0 ? (x + y - 1) / y : x / y); }#pragma endregiontypedef vector<vector<int>> Matrix;// n行k列のAとk行m列のBを渡すとn行m列のCが返る。O(N^3)Matrix Mul(const Matrix &A, const Matrix &B, int MOD) {assert(A[0].size() == B.size());Matrix C(A.size(), vector<int> (B[0].size()));for (int i = 0; i < A.size(); i++) {for (int k = 0; k < B.size(); k++) {for (int j = 0; j < B[0].size(); j++) {C[i][j] += A[i][k] * B[k][j];C[i][j] %= MOD;}}}return C;}// N次正方行列AのK乗を求める。O(N^3 log K)Matrix Pow(Matrix A, int K, int MOD) {assert(A.size() == A[0].size());Matrix B(A.size(), vector<int> (A.size()));for (int i = 0; i < A.size(); i++) {B[i][i] = 1;}while (K > 0) {if (K & 1) B = Mul(B, A, MOD);A = Mul(A, A, MOD);K >>= 1;}return B;}void PrintMatrix(const Matrix &A) {int h = A.size(), w = A[0].size();for (int i = 0; i < h; i++) {for (int j = 0; j < w; j++) {cout << A[i][j] << ' ';}cout << endl;}}signed main() {int N, M, T;cin >> N >> M >> T;vector<vector<int>> A(N, vector<int>(N));for (int i = 0; i < M; i++) {int u, v;cin >> u >> v;// u--; v--;A[u][v] = 1;}Matrix P = Pow(A, T, MOD);int ans1 = 0;for (int i = 0; i < N; i++) {ans1 += (P[0][i] > 0);}// Matrix P2 = Pow(A, T, MOD2);// int ans2 = 0;// for (int i = 0; i < N; i++) {// ans2 += (P2[0][i] > 0);// }Matrix P3 = Pow(A, T, 82589933LL);int ans3 = 0;for (int i = 0; i < N; i++) {ans3 += (P3[0][i] > 0);}cout << max(ans1, ans3) << endl;}