結果
問題 | No.356 円周上を回る3つの動点の一致 |
ユーザー |
|
提出日時 | 2016-04-01 23:20:54 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 5,000 ms |
コード長 | 2,848 bytes |
コンパイル時間 | 915 ms |
コンパイル使用メモリ | 103,388 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-13 21:02:33 |
合計ジャッジ時間 | 2,153 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 48 |
ソースコード
#define _USE_MATH_DEFINES#include <cstdio>#include <iostream>#include <sstream>#include <fstream>#include <iomanip>#include <algorithm>#include <cmath>#include <complex>#include <string>#include <vector>#include <list>#include <queue>#include <stack>#include <set>#include <map>#include <bitset>#include <numeric>#include <limits>#include <climits>#include <cfloat>#include <functional>using namespace std;class Fraction{private:long long n; // 分子(numerator)long long d; // 分母(denominator)// 約分void reduce(){if(d < 0){n *= -1;d *= -1;}long long a = abs(n);long long b = d;while(b != 0){long long tmp = a % b;a = b;b = tmp;}n /= a;d /= a;}public:Fraction(){n = 0;d = 1;}Fraction(long long n0){n = n0;d = 1;}Fraction(long long n0, long long d0){n = n0;d = d0;reduce();}pair<long long, long long> getValue() const{return make_pair(n, d);}const Fraction operator+(const Fraction& f) const{return Fraction(n*f.d + d*f.n, d*f.d);}const Fraction operator-(const Fraction& f) const{return Fraction(n*f.d - d*f.n, d*f.d);}const Fraction operator*(const Fraction& f) const{return Fraction(n*f.n, d*f.d);}const Fraction operator/(const Fraction& f) const{return Fraction(n*f.d, d*f.n);}bool operator==(const Fraction& f) const{return n == f.n && d == f.d;}bool operator!=(const Fraction& f) const{return n != f.n || d != f.d;}};// 最大公約数long long gcd(long long a, long long b){while(b != 0){long long tmp = a % b;a = b;b = tmp;}return a;}// 最小公倍数long long lcm(long long a, long long b){return a / gcd(a, b) * b;}int main(){vector<Fraction> f(3);for(int i=0; i<3; ++i){int t;cin >> t;f[i] = Fraction(1, t);}vector<Fraction> d(2);for(int i=0; i<2; ++i){if(f[i] == f[i+1]){d[i] = f[i];}else{d[i] = f[i] - f[i+1];if(d[i].getValue().first < 0)d[i] = d[i] * -1;}}long long x1 = d[0].getValue().second;long long x2 = d[1].getValue().second;long long y1 = d[0].getValue().first;long long y2 = d[1].getValue().first;long long g = gcd(y1, y2);long long x3 = x1 * (y2 / g);long long x4 = x2 * (y1 / g);long long h = gcd(x3, x4);Fraction ans(x3 / h * x4, y1 / g * y2);cout << ans.getValue().first << '/' << ans.getValue().second << endl;return 0;}