結果

問題 No.2242 Cities and Teleporters
ユーザー maspy
提出日時 2023-03-10 21:40:58
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 593 ms / 3,000 ms
コード長 21,973 bytes
コンパイル時間 5,089 ms
コンパイル使用メモリ 300,580 KB
実行使用メモリ 43,984 KB
最終ジャッジ日時 2024-09-18 03:55:12
合計ジャッジ時間 16,513 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 26
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// read(), print()
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "/home/maspy/compro/library/ds/segtree/dynamic_segtree_sparse.hpp"
// unit
// default_prod acted monoid
// O(N)
//
template <typename Monoid, bool PERSISTENT, int NODES>
struct Dynamic_SegTree_Sparse {
using MX = Monoid;
using X = typename MX::value_type;
struct Node {
ll idx;
Node *l, *r;
X prod, x;
};
const ll L0, R0;
Node *pool;
int pid;
using np = Node *;
Dynamic_SegTree_Sparse(ll L0, ll R0) : L0(L0), R0(R0), pid(0) {
pool = new Node[NODES];
}
np new_root() { return nullptr; }
np new_node(ll idx, const X x) {
pool[pid].idx = idx;
pool[pid].l = pool[pid].r = nullptr;
pool[pid].x = pool[pid].prod = x;
return &(pool[pid++]);
}
X prod(np root, ll l, ll r) {
assert(L0 <= l && l < r && r <= R0);
X x = MX::unit();
prod_rec(root, L0, R0, l, r, x);
return x;
}
X prod_all(np root) { return prod(root, L0, R0); }
np set(np root, ll i, const X &x) {
assert(L0 <= i && i < R0);
return set_rec(root, L0, R0, i, x);
}
np multiply(np root, ll i, const X &x) {
assert(L0 <= i && i < R0);
return multiply_rec(root, L0, R0, i, x);
}
template <typename F>
ll max_right(np root, F check, ll L) {
assert(L0 <= L && L <= R0 && check(MX::unit()));
X x = MX::unit();
return max_right_rec(root, check, L0, R0, L, x);
}
template <typename F>
ll min_left(np root, F check, ll R) {
assert(L0 <= R && R <= R0 && check(MX::unit()));
X x = MX::unit();
return min_left_rec(root, check, L0, R0, R, x);
}
void reset() { pid = 0; }
vc<pair<ll, X>> get_all(np root) {
vc<pair<ll, X>> res;
auto dfs = [&](auto &dfs, np c) -> void {
if (!c) return;
dfs(dfs, c->l);
res.eb(c->idx, c->x);
dfs(dfs, c->r);
};
dfs(dfs, root);
return res;
}
X get(np root, ll idx) {
auto dfs = [&](auto &dfs, np c) -> X {
if (!c) return Monoid::unit();
if (idx == c->idx) return c->x;
if (idx < (c->idx)) return dfs(dfs, c->l);
return dfs(dfs, c->r);
};
return dfs(dfs, root);
}
private:
void update(np c) {
c->prod = c->x;
if (c->l) c->prod = MX::op(c->l->prod, c->prod);
if (c->r) c->prod = MX::op(c->prod, c->r->prod);
}
np copy_node(np c) {
if (!c || !PERSISTENT) return c;
pool[pid].idx = c->idx;
pool[pid].l = c->l;
pool[pid].r = c->r;
pool[pid].x = c->x;
pool[pid].prod = c->prod;
return &(pool[pid++]);
}
np set_rec(np c, ll l, ll r, ll i, X x) {
if (!c) {
c = new_node(i, x);
return c;
}
c = copy_node(c);
if (c->idx == i) {
c->x = x;
update(c);
return c;
}
ll m = (l + r) / 2;
if (i < m) {
if (c->idx < i) swap(c->idx, i), swap(c->x, x);
c->l = set_rec(c->l, l, m, i, x);
}
if (m <= i) {
if (i < c->idx) swap(c->idx, i), swap(c->x, x);
c->r = set_rec(c->r, m, r, i, x);
}
update(c);
return c;
}
np multiply_rec(np c, ll l, ll r, ll i, X x) {
if (!c) {
c = new_node(i, x);
return c;
}
c = copy_node(c);
if (c->idx == i) {
c->x = MX::op(c->x, x);
update(c);
return c;
}
ll m = (l + r) / 2;
if (i < m) {
if (c->idx < i) swap(c->idx, i), swap(c->x, x);
c->l = multiply_rec(c->l, l, m, i, x);
}
if (m <= i) {
if (i < c->idx) swap(c->idx, i), swap(c->x, x);
c->r = multiply_rec(c->r, m, r, i, x);
}
update(c);
return c;
}
void prod_rec(np c, ll l, ll r, ll ql, ll qr, X &x) {
chmax(ql, l);
chmin(qr, r);
if (ql >= qr || !c) return;
if (l == ql && r == qr) {
x = MX::op(x, c->prod);
return;
}
ll m = (l + r) / 2;
prod_rec(c->l, l, m, ql, qr, x);
if (ql <= (c->idx) && (c->idx) < qr) x = MX::op(x, c->x);
prod_rec(c->r, m, r, ql, qr, x);
}
template <typename F>
ll max_right_rec(np c, const F &check, ll l, ll r, ll ql, X &x) {
if (!c || r <= ql) return R0;
if (check(MX::op(x, c->prod))) {
x = MX::op(x, c->prod);
return R0;
}
ll m = (l + r) / 2;
ll k = max_right_rec(c->l, check, l, m, ql, x);
if (k != R0) return k;
if (ql <= (c->idx)) {
x = MX::op(x, c->x);
if (!check(x)) return c->idx;
}
return max_right_rec(c->r, check, m, r, ql, x);
}
template <typename F>
ll min_left_rec(np c, const F &check, ll l, ll r, ll qr, X &x) {
if (!c || qr <= l) return L0;
if (check(MX::op(c->prod, x))) {
x = MX::op(c->prod, x);
return L0;
}
ll m = (l + r) / 2;
ll k = min_left_rec(c->r, check, m, r, qr, x);
if (k != L0) return k;
if (c->idx < qr) {
x = MX::op(c->x, x);
if (!check(x)) return c->idx + 1;
}
return min_left_rec(c->l, check, l, m, qr, x);
}
};
#line 2 "/home/maspy/compro/library/alg/monoid/max.hpp"
template <typename E>
struct Monoid_Max {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return max(x, y); }
static constexpr X unit() { return -infty<E>; }
static constexpr bool commute = true;
};
#line 2 "/home/maspy/compro/library/alg/monoid/add.hpp"
template <typename X>
struct Monoid_Add {
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 2 "/home/maspy/compro/library/ds/doubling.hpp"
// a 1 b x
// -1 add
template <typename Monoid, int LOG>
struct Doubling {
using X = typename Monoid::value_type;
int N;
bool is_prepared;
vvc<int> TO;
vvc<X> DP;
Doubling(int N) : N(N), is_prepared(0) {
TO.assign(LOG, vc<int>(N, -1));
DP.assign(LOG, vc<X>(N, Monoid::unit()));
}
void add(int i, int to, X x) {
assert(!is_prepared);
assert(-1 <= to && to < N);
TO[0][i] = to;
DP[0][i] = x;
}
void build() {
assert(!is_prepared);
is_prepared = 1;
FOR(k, LOG - 1) {
FOR(v, N) {
int w = TO[k][v];
if (w == -1) {
TO[k + 1][v] = -1;
DP[k + 1][v] = DP[k][v];
continue;
}
TO[k + 1][v] = TO[k][w];
DP[k + 1][v] = Monoid::op(DP[k][v], DP[k][w]);
}
}
}
pair<int, X> calc(int i, ll step) {
assert(is_prepared);
assert(step < (1LL << LOG));
X x = Monoid::unit();
FOR(k, LOG) {
if (i == -1) break;
if (step & 1LL << k) {
x = Monoid::op(x, DP[k][i]);
i = TO[k][i];
}
}
return {i, x};
}
template <typename F>
ll max_step(F check, int i) {
assert(is_prepared);
X x = Monoid::unit();
ll step = 0;
assert(check(x));
FOR_R(k, LOG) {
int j = TO[k][i];
X y = Monoid::op(x, DP[k][i]);
if (check(y)) {
step |= 1LL << k;
i = j;
x = y;
assert(i != -1);
}
}
return step;
}
void debug() {
print("TO");
FOR(k, LOG) print(TO[k]);
print("DP");
FOR(k, LOG) print(DP[k]);
}
};
#line 6 "main.cpp"
void solve() {
/*
T
T → H<=T max T
*/
LL(N);
VEC(int, H, N);
VEC(int, T, N);
Dynamic_SegTree_Sparse<Monoid_Max<int>, 0, 200'100> seg(0, infty<int> + 10);
auto root = seg.new_root();
FOR(i, N) { root = seg.multiply(root, H[i], T[i]); }
auto X = T;
UNIQUE(X);
int n = len(X);
Doubling<Monoid_Add<int>, 20> D(n);
FOR(i, n) {
int x = X[i];
int y = seg.prod(root, 0, X[i] + 1);
chmax(y, x);
int to = LB(X, y);
D.add(i, to, to - i);
}
D.build();
auto F = [&](int a, int b) -> int {
if (a == b) return 0;
// T >= h
int s = LB(X, T[a]);
int t = LB(X, H[b]);
if (s >= t) { return 1; }
auto check = [&](auto e) -> bool { return e < t - s; };
ll step = D.max_step(check, s);
ll ANS = step + 2;
if (ANS > N) ANS = -1;
return ANS;
};
INT(Q);
FOR(Q) {
INT(a, b);
--a, --b;
print(F(a, b));
}
}
signed main() {
solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0