結果

問題 No.2244 Integer Complete
ユーザー akakimidori
提出日時 2023-03-10 21:59:45
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 48 ms / 2,000 ms
コード長 6,319 bytes
コンパイル時間 13,964 ms
コンパイル使用メモリ 382,936 KB
実行使用メモリ 19,584 KB
最終ジャッジ日時 2024-09-18 04:16:30
合計ジャッジ時間 15,633 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 60
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: function `is_prime_miller` is never used
   --> src/main.rs:124:4
    |
124 | fn is_prime_miller(n: u64) -> bool {
    |    ^^^^^^^^^^^^^^^
    |
    = note: `#[warn(dead_code)]` on by default

ソースコード

diff #
プレゼンテーションモードにする

fn main() {
input! {
n: usize,
m: usize,
a: [usize; n],
b: [usize; m],
}
if a[0] > 1 || b[0] > 1 {
println!("1");
return;
}
let k = *a.iter().chain(b.iter()).max().unwrap();
let mut p = vec![false; k + 2];
let mut q = vec![false; k + 2];
for a in a.iter() {
p[*a] = true;
}
for a in b.iter() {
q[*a] = true;
}
let x = (1..).find(|x| !p[*x] && !q[*x]).unwrap();
let s = x * x;
let mut val = (s..((x + 1).pow(2))).collect::<Vec<_>>();
let mut divisor = vec![vec![1]; val.len()];
enumerate_prime(x, |p| {
let mut k = (s + p - 1) / p * p - s;
while k < val.len() {
let div = &mut divisor[k];
let len = div.len();
while val[k] % p == 0 {
val[k] /= p;
for _ in 0..len {
let v = div[div.len() - len] * p;
div.push(v);
}
}
k += p;
}
});
for (val, divisor) in val.iter().zip(divisor.iter_mut()) {
if *val > 1 {
let p = *val;
for i in 0..divisor.len() {
let v = divisor[i] * p;
divisor.push(v);
}
}
}
let mut ans = 0;
for (i, d) in divisor.iter().enumerate() {
let mut can = false;
let n = s + i;
for d in d.iter() {
let e = n / d;
let a = kth_root(*d as u64, 2) as usize;
let b = kth_root(e as u64, 2) as usize;
if (p[a] && q[b]) || (p[b] && q[a]) {
can = true;
break;
}
}
if !can {
ans = n;
break;
}
}
println!("{}", ans);
}
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
// ---------- begin miller-rabin ----------
fn is_prime_miller(n: u64) -> bool {
if n <= 1 {
return false;
} else if n <= 3 {
return true;
} else if n % 2 == 0 {
return false;
}
let pow = |r: u64, mut m: u64| -> u64 {
let mut t = 1u128;
let mut s = (r % n) as u128;
let n = n as u128;
while m > 0 {
if m & 1 == 1 {
t = t * s % n;
}
s = s * s % n;
m >>= 1;
}
t as u64
};
let mut d = n - 1;
let mut s = 0;
while d % 2 == 0 {
d /= 2;
s += 1;
}
const B: [u64; 7] = [2, 325, 9375, 28178, 450775, 9780504, 1795265022];
for &b in B.iter() {
let mut a = pow(b, d);
if a <= 1 {
continue;
}
let mut i = 0;
while i < s && a != n - 1 {
i += 1;
a = (a as u128 * a as u128 % n as u128) as u64;
}
if i >= s {
return false;
}
}
true
}
// ---------- end miller-rabin ----------
// ---------- begin enumerate prime ----------
fn enumerate_prime<F>(n: usize, mut f: F)
where
F: FnMut(usize),
{
assert!(1 <= n && n <= 5 * 10usize.pow(8));
let batch = (n as f64).sqrt().ceil() as usize;
let mut is_prime = vec![true; batch + 1];
for i in (2..).take_while(|p| p * p <= batch) {
if is_prime[i] {
let mut j = i * i;
while let Some(p) = is_prime.get_mut(j) {
*p = false;
j += i;
}
}
}
let mut prime = vec![];
for (i, p) in is_prime.iter().enumerate().skip(2) {
if *p && i <= n {
f(i);
prime.push(i);
}
}
let mut l = batch + 1;
while l <= n {
let r = std::cmp::min(l + batch, n + 1);
is_prime.clear();
is_prime.resize(r - l, true);
for &p in prime.iter() {
let mut j = (l + p - 1) / p * p - l;
while let Some(is_prime) = is_prime.get_mut(j) {
*is_prime = false;
j += p;
}
}
for (i, _) in is_prime.iter().enumerate().filter(|p| *p.1) {
f(i + l);
}
l += batch;
}
}
// ---------- end enumerate prime ----------
// floor(a ^ (1 / k))
pub fn kth_root(a: u64, k: u64) -> u64 {
assert!(k > 0);
if a == 0 {
return 0;
}
if k >= 64 {
return 1;
}
if k == 1 {
return a;
}
let valid = |x: u64| -> bool {
let mut t = x;
for _ in 1..k {
let (val, ok) = t.overflowing_mul(x);
if !(!ok && val <= a) {
return false;
}
t = val;
}
true
};
let mut ok = 1;
let mut ng = 2;
while valid(ng) {
ok = ng;
ng *= 2;
}
while ng - ok > 1 {
let mid = ok + (ng - ok) / 2;
if valid(mid) {
ok = mid;
} else {
ng = mid;
}
}
ok
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0