結果

問題 No.2242 Cities and Teleporters
ユーザー kaikeykaikey
提出日時 2023-03-10 22:26:59
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 6,989 bytes
コンパイル時間 2,904 ms
コンパイル使用メモリ 229,208 KB
実行使用メモリ 48,596 KB
最終ジャッジ日時 2024-09-18 04:38:01
合計ジャッジ時間 23,944 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 WA -
testcase_05 AC 1,360 ms
47,288 KB
testcase_06 AC 1,040 ms
47,324 KB
testcase_07 AC 1,354 ms
47,420 KB
testcase_08 AC 1,532 ms
48,300 KB
testcase_09 AC 1,354 ms
47,480 KB
testcase_10 AC 552 ms
48,216 KB
testcase_11 AC 818 ms
47,864 KB
testcase_12 AC 805 ms
47,316 KB
testcase_13 AC 893 ms
47,724 KB
testcase_14 AC 1,028 ms
47,360 KB
testcase_15 AC 841 ms
47,276 KB
testcase_16 AC 830 ms
47,504 KB
testcase_17 AC 1,084 ms
47,248 KB
testcase_18 AC 583 ms
47,052 KB
testcase_19 AC 627 ms
46,800 KB
testcase_20 AC 891 ms
46,652 KB
testcase_21 AC 798 ms
46,780 KB
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
#include <random>
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld;
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(10); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto mul = [](T a, T b) -> T { return a * b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>; using VVVl = V<V<Vl>>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
	for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
	return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
	for (T& in : v) is >> in;
	return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
template <class T>
T div_floor(T a, T b) {
	if (b < 0) a *= -1, b *= -1;
	return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
	if (b < 0) a *= -1, b *= -1;
	return a > 0 ? (a - 1) / b + 1 : a / b;
}
template <class F> struct rec {
	F f;
	rec(F&& f_) : f(std::forward<F>(f_)) {}
	template <class... Args> auto operator()(Args &&... args) const {
		return f(*this, std::forward<Args>(args)...);
	}
};
//lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }
lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); }
bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => true
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 1e18;
lint dx[8] = { 0, 1, 0, -1, 1, -1, 1, -1 }, dy[8] = { 1, 0, -1, 0, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; }
struct Edge {
	lint from, to;
	lint cost;
	Edge() {

	}
	Edge(lint u, lint v, lint c) {
		cost = c;
		from = u;
		to = v;
	}
	bool operator<(const Edge& e) const {
		return cost < e.cost;
	}
};
struct WeightedEdge {
	lint to;
	lint cost;
	WeightedEdge(lint v, lint c) {
		to = v;
		cost = c;
	}
	bool operator<(const WeightedEdge& e) const {
		return cost < e.cost;
	}
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<lint, plint> tlint;
typedef pair<ld, ld> pld;
typedef pair<plint, plint> qlint;
typedef pair<char, lint> vstr;
typedef pair<lint, Vl> valv;

template< typename Monoid >
struct SegmentTree {
	using F = function< Monoid(Monoid, Monoid) >;

	int sz;
	vector< Monoid > seg;

	const F f;
	const Monoid M1;

	SegmentTree(int n, const F f, const Monoid& M1) : f(f), M1(M1) {
		sz = 1;
		while (sz < n) sz <<= 1;
		seg.assign(2 * sz, M1);
	}

	void set(int k, const Monoid& x) {
		seg[k + sz] = x;
	}

	void build() {
		for (int k = sz - 1; k > 0; k--) {
			seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
		}
	}

	void update(int k, const Monoid& x) {
		k += sz;
		seg[k] = x;
		while (k >>= 1) {
			seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
		}
	}

	Monoid query(int a, int b) {
		Monoid L = M1, R = M1;
		for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
			if (a & 1) L = f(L, seg[a++]);
			if (b & 1) R = f(seg[--b], R);
		}
		return f(L, R);
	}

	Monoid operator[](const int& k) const {
		return seg[k + sz];
	}

	template< typename C >
	int find_subtree(int a, const C& check, Monoid& M, bool type) {
		while (a < sz) {
			Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]);
			if (check(nxt)) a = 2 * a + type;
			else M = nxt, a = 2 * a + 1 - type;
		}
		return a - sz;
	}


	template< typename C >
	int find_first(int a, const C& check) {
		Monoid L = M1;
		if (a <= 0) {
			if (check(f(L, seg[1]))) return find_subtree(1, check, L, false);
			return -1;
		}
		int b = sz;
		for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
			if (a & 1) {
				Monoid nxt = f(L, seg[a]);
				if (check(nxt)) return find_subtree(a, check, L, false);
				L = nxt;
				++a;
			}
		}
		return -1;
	}

	template< typename C >
	int find_last(int b, const C& check) {
		Monoid R = M1;
		if (b >= sz) {
			if (check(f(seg[1], R))) return find_subtree(1, check, R, true);
			return -1;
		}
		int a = sz;
		for (b += sz; a < b; a >>= 1, b >>= 1) {
			if (b & 1) {
				Monoid nxt = f(seg[--b], R);
				if (check(nxt)) return find_subtree(b, check, R, true);
				R = nxt;
			}
		}
		return -1;
	}
};

struct Doubling
{
	int LOG = 1;
	vector< vector< int > > table;

	Doubling(int sz, int64_t lim_t)
	{
		int curr = 1;
		while (curr < lim_t) {
			curr *= 2;
			LOG++;
		}
		table.assign(LOG, vector< int >(sz, -1));
	}

	void set_next(int k, int x)
	{
		table[0][k] = x;
	}

	void build()
	{
		for (int k = 0; k + 1 < LOG; k++) {
			for (int i = 0; i < table[k].size(); i++) {
				if (table[k][i] == -1) table[k + 1][i] = -1;
				else table[k + 1][i] = table[k][table[k][i]];
			}
		}
	}

	int query(int k, int64_t t)
	{
		for (int i = LOG - 1; i >= 0; i--) {
			if ((t >> i) & 1) k = table[i][k];
		}
		return k;
	}
};

int main() {
	lint N;
	cin >> N;
	VVl arr(2, Vl(N));
	cin >> arr;
	Vl _arr = arr[0];
	V<tlint> __arr;
	REP(i, N) {
		__arr.push_back({ arr[0][i], {arr[1][i], i} });
	}
	sort(ALL(_arr));
	sort(ALL(__arr));

	SegmentTree<plint> seg(N, f_max<plint>, { -1, -1 });
	REP(i, N) {
		seg.set(i, __arr[i].second);
	}
	seg.build();

	Vl nxt(N);
	REP(i, N) {
		lint idx = upper_bound(ALL(_arr), __arr[i].second.first) - _arr.begin();
		nxt[__arr[i].second.second] = seg.query(0, idx).second;
	}

	Doubling dbl(N, 1 << 30);
	REP(i, N) dbl.set_next(i, nxt[i]);
	dbl.build();
	lint Q;
	cin >> Q;
	REP(i, Q) {
		lint A, B;
		cin >> A >> B; A--; B--;
		if (nxt[A] == -1) {
			cout << -1 << endk;
		}
		else if (arr[1][dbl.query(A, 3e5)] < arr[0][B]) {
			cout << -1 << endk;
		}
		else {
			lint ng = -1, ok = 3e5 + 1;
			while (ok - ng > 1) {
				lint mid = (ok + ng) / 2;
				if (arr[1][dbl.query(A, mid)] >= arr[0][B]) ok = mid;
				else ng = mid;
			}
			cout << ok + 1 << endl;
		}
	}
}
0