結果
問題 | No.2250 Split Permutation |
ユーザー |
![]() |
提出日時 | 2023-03-11 16:35:20 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,322 bytes |
コンパイル時間 | 11,218 ms |
コンパイル使用メモリ | 278,660 KB |
最終ジャッジ日時 | 2025-02-11 10:04:55 |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 27 TLE * 8 |
ソースコード
#pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; constexpr int mod = 998244353; struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; /** * @brief Montgomery ModInt */ template< uint32_t mod, bool fast = false > struct MontgomeryModInt { using mint = MontgomeryModInt; using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; i++) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1, "invalid, r * mod != 1"); static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); u32 x; MontgomeryModInt(): x{} {} MontgomeryModInt(const i64 &a) : x(reduce(u64(fast ? a : (a % mod + mod)) * n2)) {} static constexpr u32 reduce(const u64 &b) { return u32(b >> 32) + mod - u32((u64(u32(b) * r) * mod) >> 32); } mint &operator+=(const mint &p) { if (i32(x += p.x - 2 * mod) < 0) x += 2 * mod; return *this; } mint &operator-=(const mint &p) { if (i32(x -= p.x) < 0) x += 2 * mod; return *this; } mint &operator*=(const mint &p) { x = reduce(u64(x) * p.x); return *this; } mint &operator/=(const mint &p) { *this *= p.inverse(); return *this; } mint operator-() const { return mint() - *this; } mint operator+(const mint &p) const { return mint(*this) += p; } mint operator-(const mint &p) const { return mint(*this) -= p; } mint operator*(const mint &p) const { return mint(*this) *= p; } mint operator/(const mint &p) const { return mint(*this) /= p; } bool operator==(const mint &p) const { return (x >= mod ? x - mod : x) == (p.x >= mod ? p.x - mod : p.x); } bool operator!=(const mint &p) const { return (x >= mod ? x - mod : x) != (p.x >= mod ? p.x - mod : p.x); } u32 get() const { u32 ret = reduce(x); return ret >= mod ? ret - mod : ret; } mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &p) { return os << p.get(); } friend istream &operator>>(istream &is, mint &a) { i64 t; is >> t; a = mint(t); return is; } static u32 get_mod() { return mod; } }; using modint = MontgomeryModInt< mod >; int main() { int N; cin >> N; vector< int > P(N); for (auto &p: P) cin >> p, --p; vector< modint > mul2(N); mul2[0] = 1; for (int i = 1; i < N; i++) { mul2[i] = mul2[i - 1] + mul2[i - 1]; } modint ret = 0; long long inv = 0; vector< int > bit1(N), bit2(N); for (int i = N - 1; i >= 0; i--) { long long res = 0; for (int j = 0; j < P[i]; j++) { inv += bit1[j]; res += bit2[j]; } ret -= modint(res) * mul2[i]; bit1[P[i]]++; bit2[P[i]] = mul2[N - i - 1].get(); } cout << ret + mul2[N - 1] * inv << endl; }