結果
問題 | No.1813 Magical Stones |
ユーザー |
|
提出日時 | 2023-03-15 14:05:24 |
言語 | Go (1.23.4) |
結果 |
AC
|
実行時間 | 372 ms / 2,000 ms |
コード長 | 3,555 bytes |
コンパイル時間 | 12,667 ms |
コンパイル使用メモリ | 232,508 KB |
実行使用メモリ | 45,368 KB |
最終ジャッジ日時 | 2024-09-18 08:44:18 |
合計ジャッジ時間 | 20,667 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 40 |
ソースコード
package mainimport ("bufio""fmt""os")func main() {// https://yukicoder.me/problems/no/1813// 不等关系:有向边// 给定一个DAG 求将DAG变为一个环(强连通分量)的最少需要添加的边数// !答案为 `max(入度为0的点的个数, 出度为0的点的个数)`in := bufio.NewReader(os.Stdin)out := bufio.NewWriter(os.Stdout)defer out.Flush()var n, m intfmt.Fscan(in, &n, &m)scc := NewStronglyConnectedComponents(n)for i := 0; i < m; i++ {var u, v intfmt.Fscan(in, &u, &v)scc.AddEdge(u-1, v-1, 1)}scc.Build()if len(scc.Group) == 1 { // 缩成一个点了,说明是强连通的fmt.Fprintln(out, 0)return}g := len(scc.Group)indeg, outDeg := make([]int, g), make([]int, g)for i := 0; i < g; i++ {for _, next := range scc.Dag[i] {indeg[next]++outDeg[i]++}}in0, out0 := 0, 0for i := 0; i < g; i++ {if indeg[i] == 0 {in0++}if outDeg[i] == 0 {out0++}}fmt.Fprintln(out, max(in0, out0))}func max(a, b int) int {if a > b {return a}return b}type WeightedEdge struct{ from, to, cost, index int }type StronglyConnectedComponents struct {G [][]WeightedEdge // 原图Dag [][]int // 强连通分量缩点后的DAG(有向图邻接表)CompId []int // 每个顶点所属的强连通分量的编号Group [][]int // 每个强连通分量所包含的顶点rg [][]WeightedEdgeorder []intused []booleid int}func NewStronglyConnectedComponents(n int) *StronglyConnectedComponents {return &StronglyConnectedComponents{G: make([][]WeightedEdge, n)}}func (scc *StronglyConnectedComponents) AddEdge(from, to, cost int) {scc.G[from] = append(scc.G[from], WeightedEdge{from, to, cost, scc.eid})scc.eid++}func (scc *StronglyConnectedComponents) Build() {scc.rg = make([][]WeightedEdge, len(scc.G))for i := range scc.G {for _, e := range scc.G[i] {scc.rg[e.to] = append(scc.rg[e.to], WeightedEdge{e.to, e.from, e.cost, e.index})}}scc.CompId = make([]int, len(scc.G))for i := range scc.CompId {scc.CompId[i] = -1}scc.used = make([]bool, len(scc.G))for i := range scc.G {scc.dfs(i)}for i, j := 0, len(scc.order)-1; i < j; i, j = i+1, j-1 {scc.order[i], scc.order[j] = scc.order[j], scc.order[i]}ptr := 0for _, v := range scc.order {if scc.CompId[v] == -1 {scc.rdfs(v, ptr)ptr++}}dag := make([][]int, ptr)visited := make(map[int]struct{}) // 边去重for i := range scc.G {for _, e := range scc.G[i] {x, y := scc.CompId[e.from], scc.CompId[e.to]if x == y {continue // 原来的边 x->y 的顶点在同一个强连通分量内,可以汇合同一个 SCC 的权值}hash := x*len(scc.G) + yif _, ok := visited[hash]; !ok {dag[x] = append(dag[x], y)visited[hash] = struct{}{}}}}scc.Dag = dagscc.Group = make([][]int, ptr)for i := range scc.G {scc.Group[scc.CompId[i]] = append(scc.Group[scc.CompId[i]], i)}}// 获取顶点k所属的强连通分量的编号func (scc *StronglyConnectedComponents) Get(k int) int {return scc.CompId[k]}func (scc *StronglyConnectedComponents) dfs(idx int) {tmp := scc.used[idx]scc.used[idx] = trueif tmp {return}for _, e := range scc.G[idx] {scc.dfs(e.to)}scc.order = append(scc.order, idx)}func (scc *StronglyConnectedComponents) rdfs(idx int, cnt int) {if scc.CompId[idx] != -1 {return}scc.CompId[idx] = cntfor _, e := range scc.rg[idx] {scc.rdfs(e.to, cnt)}}