結果
| 問題 |
No.1813 Magical Stones
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-03-15 14:05:24 |
| 言語 | Go (1.23.4) |
| 結果 |
AC
|
| 実行時間 | 372 ms / 2,000 ms |
| コード長 | 3,555 bytes |
| コンパイル時間 | 12,667 ms |
| コンパイル使用メモリ | 232,508 KB |
| 実行使用メモリ | 45,368 KB |
| 最終ジャッジ日時 | 2024-09-18 08:44:18 |
| 合計ジャッジ時間 | 20,667 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 40 |
ソースコード
package main
import (
"bufio"
"fmt"
"os"
)
func main() {
// https://yukicoder.me/problems/no/1813
// 不等关系:有向边
// 给定一个DAG 求将DAG变为一个环(强连通分量)的最少需要添加的边数
// !答案为 `max(入度为0的点的个数, 出度为0的点的个数)`
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, m int
fmt.Fscan(in, &n, &m)
scc := NewStronglyConnectedComponents(n)
for i := 0; i < m; i++ {
var u, v int
fmt.Fscan(in, &u, &v)
scc.AddEdge(u-1, v-1, 1)
}
scc.Build()
if len(scc.Group) == 1 { // 缩成一个点了,说明是强连通的
fmt.Fprintln(out, 0)
return
}
g := len(scc.Group)
indeg, outDeg := make([]int, g), make([]int, g)
for i := 0; i < g; i++ {
for _, next := range scc.Dag[i] {
indeg[next]++
outDeg[i]++
}
}
in0, out0 := 0, 0
for i := 0; i < g; i++ {
if indeg[i] == 0 {
in0++
}
if outDeg[i] == 0 {
out0++
}
}
fmt.Fprintln(out, max(in0, out0))
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
type WeightedEdge struct{ from, to, cost, index int }
type StronglyConnectedComponents struct {
G [][]WeightedEdge // 原图
Dag [][]int // 强连通分量缩点后的DAG(有向图邻接表)
CompId []int // 每个顶点所属的强连通分量的编号
Group [][]int // 每个强连通分量所包含的顶点
rg [][]WeightedEdge
order []int
used []bool
eid int
}
func NewStronglyConnectedComponents(n int) *StronglyConnectedComponents {
return &StronglyConnectedComponents{G: make([][]WeightedEdge, n)}
}
func (scc *StronglyConnectedComponents) AddEdge(from, to, cost int) {
scc.G[from] = append(scc.G[from], WeightedEdge{from, to, cost, scc.eid})
scc.eid++
}
func (scc *StronglyConnectedComponents) Build() {
scc.rg = make([][]WeightedEdge, len(scc.G))
for i := range scc.G {
for _, e := range scc.G[i] {
scc.rg[e.to] = append(scc.rg[e.to], WeightedEdge{e.to, e.from, e.cost, e.index})
}
}
scc.CompId = make([]int, len(scc.G))
for i := range scc.CompId {
scc.CompId[i] = -1
}
scc.used = make([]bool, len(scc.G))
for i := range scc.G {
scc.dfs(i)
}
for i, j := 0, len(scc.order)-1; i < j; i, j = i+1, j-1 {
scc.order[i], scc.order[j] = scc.order[j], scc.order[i]
}
ptr := 0
for _, v := range scc.order {
if scc.CompId[v] == -1 {
scc.rdfs(v, ptr)
ptr++
}
}
dag := make([][]int, ptr)
visited := make(map[int]struct{}) // 边去重
for i := range scc.G {
for _, e := range scc.G[i] {
x, y := scc.CompId[e.from], scc.CompId[e.to]
if x == y {
continue // 原来的边 x->y 的顶点在同一个强连通分量内,可以汇合同一个 SCC 的权值
}
hash := x*len(scc.G) + y
if _, ok := visited[hash]; !ok {
dag[x] = append(dag[x], y)
visited[hash] = struct{}{}
}
}
}
scc.Dag = dag
scc.Group = make([][]int, ptr)
for i := range scc.G {
scc.Group[scc.CompId[i]] = append(scc.Group[scc.CompId[i]], i)
}
}
// 获取顶点k所属的强连通分量的编号
func (scc *StronglyConnectedComponents) Get(k int) int {
return scc.CompId[k]
}
func (scc *StronglyConnectedComponents) dfs(idx int) {
tmp := scc.used[idx]
scc.used[idx] = true
if tmp {
return
}
for _, e := range scc.G[idx] {
scc.dfs(e.to)
}
scc.order = append(scc.order, idx)
}
func (scc *StronglyConnectedComponents) rdfs(idx int, cnt int) {
if scc.CompId[idx] != -1 {
return
}
scc.CompId[idx] = cnt
for _, e := range scc.rg[idx] {
scc.rdfs(e.to, cnt)
}
}