結果

問題 No.931 Multiplicative Convolution
ユーザー mkawa2mkawa2
提出日時 2023-03-17 18:40:58
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 238 ms / 2,000 ms
コード長 5,988 bytes
コンパイル時間 155 ms
コンパイル使用メモリ 82,440 KB
実行使用メモリ 135,304 KB
最終ジャッジ日時 2024-09-18 10:06:30
合計ジャッジ時間 4,611 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 37 ms
53,944 KB
testcase_01 AC 38 ms
55,280 KB
testcase_02 AC 38 ms
54,024 KB
testcase_03 AC 37 ms
53,504 KB
testcase_04 AC 38 ms
53,748 KB
testcase_05 AC 41 ms
55,432 KB
testcase_06 AC 68 ms
75,180 KB
testcase_07 AC 89 ms
78,712 KB
testcase_08 AC 190 ms
109,060 KB
testcase_09 AC 179 ms
112,152 KB
testcase_10 AC 184 ms
111,080 KB
testcase_11 AC 177 ms
111,492 KB
testcase_12 AC 167 ms
95,148 KB
testcase_13 AC 238 ms
135,304 KB
testcase_14 AC 199 ms
113,180 KB
testcase_15 AC 199 ms
108,228 KB
testcase_16 AC 196 ms
108,912 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys

# sys.setrecursionlimit(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()

dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
inf = (1 << 63)-1
# inf = (1 << 31)-1
# md = 10**9+7
md = 998244353

IMAG = 911660635
IIMAG = 86583718
rate2 = (
    0, 911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456,
    131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443,
    56250497,
    867605899, 0)
irate2 = (0, 86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882,
          927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183,
          824071951, 103369235, 0)
rate3 = (
    0, 372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099,
    183021267,
    402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204, 0)
irate3 = (0, 509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500,
          771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365,
          530924681, 0)

def butterfly(a):
    n = len(a)
    h = (n-1).bit_length()
    le = 0
    while le < h:
        if h-le == 1:
            p = 1 << (h-le-1)
            rot = 1
            for s in range(1 << le):
                offset = s << (h-le)
                for i in range(p):
                    l = a[i+offset]
                    r = a[i+offset+p]*rot
                    a[i+offset] = (l+r)%md
                    a[i+offset+p] = (l-r)%md
                rot *= rate2[(~s & -~s).bit_length()]
                rot %= md
            le += 1
        else:
            p = 1 << (h-le-2)
            rot = 1
            for s in range(1 << le):
                rot2 = rot*rot%md
                rot3 = rot2*rot%md
                offset = s << (h-le)
                for i in range(p):
                    a0 = a[i+offset]
                    a1 = a[i+offset+p]*rot
                    a2 = a[i+offset+p*2]*rot2
                    a3 = a[i+offset+p*3]*rot3
                    a1na3imag = (a1-a3)%md*IMAG
                    a[i+offset] = (a0+a2+a1+a3)%md
                    a[i+offset+p] = (a0+a2-a1-a3)%md
                    a[i+offset+p*2] = (a0-a2+a1na3imag)%md
                    a[i+offset+p*3] = (a0-a2-a1na3imag)%md
                rot *= rate3[(~s & -~s).bit_length()]
                rot %= md
            le += 2

def butterfly_inv(a):
    n = len(a)
    h = (n-1).bit_length()
    le = h
    while le:
        if le == 1:
            p = 1 << (h-le)
            irot = 1
            for s in range(1 << (le-1)):
                offset = s << (h-le+1)
                for i in range(p):
                    l = a[i+offset]
                    r = a[i+offset+p]
                    a[i+offset] = (l+r)%md
                    a[i+offset+p] = (l-r)*irot%md
                irot *= irate2[(~s & -~s).bit_length()]
                irot %= md
            le -= 1
        else:
            p = 1 << (h-le)
            irot = 1
            for s in range(1 << (le-2)):
                irot2 = irot*irot%md
                irot3 = irot2*irot%md
                offset = s << (h-le+2)
                for i in range(p):
                    a0 = a[i+offset]
                    a1 = a[i+offset+p]
                    a2 = a[i+offset+p*2]
                    a3 = a[i+offset+p*3]
                    a2na3iimag = (a2-a3)*IIMAG%md
                    a[i+offset] = (a0+a1+a2+a3)%md
                    a[i+offset+p] = (a0-a1+a2na3iimag)*irot%md
                    a[i+offset+p*2] = (a0+a1-a2-a3)*irot2%md
                    a[i+offset+p*3] = (a0-a1-a2na3iimag)*irot3%md
                irot *= irate3[(~s & -~s).bit_length()]
                irot %= md
            le -= 2

def multiply(s, t):
    n = len(s)
    m = len(t)
    if min(n, m) <= 60:
        a = [0]*(n+m-1)
        for i in range(n):
            if i%8 == 0:
                for j in range(m):
                    a[i+j] += s[i]*t[j]
                    a[i+j] %= md
            else:
                for j in range(m):
                    a[i+j] += s[i]*t[j]
        return [x%md for x in a]
    a = s.copy()
    b = t.copy()
    z = 1 << (n+m-2).bit_length()
    a += [0]*(z-n)
    b += [0]*(z-m)
    butterfly(a)
    butterfly(b)
    for i in range(z):
        a[i] *= b[i]
        a[i] %= md
    butterfly_inv(a)
    a = a[:n+m-1]
    iz = pow(z, md-2, md)
    return [v*iz%md for v in a]

def find_primitive_root(p):
    def is_primitive_root(r):
        atoe = [-1]*p
        a = 1
        for e in range(p-1):
            if atoe[a] != -1: return None
            atoe[a] = e
            a = a*r%p
        return atoe

    for r in range(2, p):
        atoe = is_primitive_root(r)
        if atoe: return atoe
    return None

p = II()
aa = LI()
bb = LI()

if p == 2:
    print(aa[0]*bb[0]%md)
    exit()

itoe = find_primitive_root(p)
etoi = [-1]*p
for i, e in enumerate(itoe[1:], 1): etoi[e] = i

def toxx(aa):
    xx = [0]*p
    for i, a in enumerate(aa, 1):
        e = itoe[i]
        xx[e] += a
    return xx

xx = toxx(aa)
yy = toxx(bb)

cc = multiply(xx, yy)
# print(cc)

ans = [0]*p
for e, c in enumerate(cc):
    i = etoi[e%(p-1)]
    ans[i] += c
    ans[i] %= md

print(*ans[1:])
0