結果
問題 | No.2250 Split Permutation |
ユーザー |
👑 ![]() |
提出日時 | 2023-03-17 22:03:40 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 70 ms / 3,000 ms |
コード長 | 10,517 bytes |
コンパイル時間 | 3,114 ms |
コンパイル使用メモリ | 259,112 KB |
実行使用メモリ | 7,168 KB |
最終ジャッジ日時 | 2024-09-18 11:03:33 |
合計ジャッジ時間 | 5,083 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 35 |
ソースコード
#include <bits/stdc++.h>using namespace std;#define FOR(i,m,n) for(int i=(m);i<(n);++i)#define REP(i,n) FOR(i,0,n)#define ALL(v) (v).begin(),(v).end()using ll = long long;constexpr int INF = 0x3f3f3f3f;constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;constexpr double EPS = 1e-8;constexpr int MOD = 998244353;// constexpr int MOD = 1000000007;constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};template <typename T, typename U>inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }template <typename T, typename U>inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }struct IOSetup {IOSetup() {std::cin.tie(nullptr);std::ios_base::sync_with_stdio(false);std::cout << fixed << setprecision(20);}} iosetup;#ifndef ARBITRARY_MODINT# include <cassert>#endif#include <compare>// #include <numeric>#ifndef ARBITRARY_MODINTtemplate <int M>struct MInt {unsigned int v;MInt() : v(0) {}MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}static constexpr int get_mod() { return M; }static void set_mod(const int divisor) { assert(divisor == M); }static void init(const int x) {inv<true>(x);fact(x);fact_inv(x);}template <bool MEMOIZES = false>static MInt inv(const int n) {// assert(0 <= n && n < M && std::gcd(n, M) == 1);static std::vector<MInt> inverse{0, 1};const int prev = inverse.size();if (n < prev) return inverse[n];if constexpr (MEMOIZES) {// "n!" and "M" must be disjoint.inverse.resize(n + 1);for (int i = prev; i <= n; ++i) {inverse[i] = -inverse[M % i] * (M / i);}return inverse[n];}int u = 1, v = 0;for (unsigned int a = n, b = M; b;) {const unsigned int q = a / b;std::swap(a -= q * b, b);std::swap(u -= q * v, v);}return u;}static MInt fact(const int n) {static std::vector<MInt> factorial{1};const int prev = factorial.size();if (n >= prev) {factorial.resize(n + 1);for (int i = prev; i <= n; ++i) {factorial[i] = factorial[i - 1] * i;}}return factorial[n];}static MInt fact_inv(const int n) {static std::vector<MInt> f_inv{1};const int prev = f_inv.size();if (n >= prev) {f_inv.resize(n + 1);f_inv[n] = inv(fact(n).v);for (int i = n; i > prev; --i) {f_inv[i - 1] = f_inv[i] * i;}}return f_inv[n];}static MInt nCk(const int n, const int k) {if (n < 0 || n < k || k < 0) return 0;return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :fact_inv(n - k) * fact_inv(k));}static MInt nPk(const int n, const int k) {return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);}static MInt nHk(const int n, const int k) {return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));}static MInt large_nCk(long long n, const int k) {if (n < 0 || n < k || k < 0) return 0;inv<true>(k);MInt res = 1;for (int i = 1; i <= k; ++i) {res *= inv(i) * n--;}return res;}MInt pow(long long exponent) const {MInt res = 1, tmp = *this;for (; exponent > 0; exponent >>= 1) {if (exponent & 1) res *= tmp;tmp *= tmp;}return res;}MInt& operator+=(const MInt& x) {if (std::cmp_greater_equal(v += x.v, M)) v -= M;return *this;}MInt& operator-=(const MInt& x) {if (std::cmp_greater_equal(v += M - x.v, M)) v -= M;return *this;}MInt& operator*=(const MInt& x) {v = static_cast<unsigned long long>(v) * x.v % M;return *this;}MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }auto operator<=>(const MInt& x) const = default;MInt& operator++() {if (std::cmp_equal(++v, M)) v = 0;return *this;}MInt operator++(int) {const MInt res = *this;++*this;return res;}MInt& operator--() {v = (v == 0 ? M - 1 : v - 1);return *this;}MInt operator--(int) {const MInt res = *this;--*this;return res;}MInt operator+() const { return *this; }MInt operator-() const { return MInt(v ? M - v : 0); }MInt operator+(const MInt& x) const { return MInt(*this) += x; }MInt operator-(const MInt& x) const { return MInt(*this) -= x; }MInt operator*(const MInt& x) const { return MInt(*this) *= x; }MInt operator/(const MInt& x) const { return MInt(*this) /= x; }friend std::ostream& operator<<(std::ostream& os, const MInt& x) {return os << x.v;}friend std::istream& operator>>(std::istream& is, MInt& x) {long long v;is >> v;x = MInt(v);return is;}};#else // ARBITRARY_MODINTtemplate <int ID>struct MInt {unsigned int v;MInt() : v(0) {}MInt(const long long x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {}static int get_mod() { return mod(); }static void set_mod(const int divisor) { mod() = divisor; }static void init(const int x) {inv<true>(x);fact(x);fact_inv(x);}template <bool MEMOIZES = false>static MInt inv(const int n) {// assert(0 <= n && n < mod() && std::gcd(x, mod()) == 1);static std::vector<MInt> inverse{0, 1};const int prev = inverse.size();if (n < prev) return inverse[n];if constexpr (MEMOIZES) {// "n!" and "M" must be disjoint.inverse.resize(n + 1);for (int i = prev; i <= n; ++i) {inverse[i] = -inverse[mod() % i] * (mod() / i);}return inverse[n];}int u = 1, v = 0;for (unsigned int a = n, b = mod(); b;) {const unsigned int q = a / b;std::swap(a -= q * b, b);std::swap(u -= q * v, v);}return u;}static MInt fact(const int n) {static std::vector<MInt> factorial{1};const int prev = factorial.size();if (n >= prev) {factorial.resize(n + 1);for (int i = prev; i <= n; ++i) {factorial[i] = factorial[i - 1] * i;}}return factorial[n];}static MInt fact_inv(const int n) {static std::vector<MInt> f_inv{1};const int prev = f_inv.size();if (n >= prev) {f_inv.resize(n + 1);f_inv[n] = inv(fact(n).v);for (int i = n; i > prev; --i) {f_inv[i - 1] = f_inv[i] * i;}}return f_inv[n];}static MInt nCk(const int n, const int k) {if (n < 0 || n < k || k < 0) return 0;return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :fact_inv(n - k) * fact_inv(k));}static MInt nPk(const int n, const int k) {return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);}static MInt nHk(const int n, const int k) {return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));}static MInt large_nCk(long long n, const int k) {if (n < 0 || n < k || k < 0) return 0;inv<true>(k);MInt res = 1;for (int i = 1; i <= k; ++i) {res *= inv(i) * n--;}return res;}MInt pow(long long exponent) const {MInt res = 1, tmp = *this;for (; exponent > 0; exponent >>= 1) {if (exponent & 1) res *= tmp;tmp *= tmp;}return res;}MInt& operator+=(const MInt& x) {if (std::cmp_greater_equal(v += x.v, mod())) v -= mod();return *this;}MInt& operator-=(const MInt& x) {if (std::cmp_greater_equal(v += mod() - x.v, mod())) v -= mod();return *this;}MInt& operator*=(const MInt& x) {v = static_cast<unsigned long long>(v) * x.v % mod();return *this;}MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }auto operator<=>(const MInt& x) const = default;MInt& operator++() {if (std::cmp_equal(++v, mod())) v = 0;return *this;}MInt operator++(int) {const MInt res = *this;++*this;return res;}MInt& operator--() {v = (v == 0 ? mod() - 1 : v - 1);return *this;}MInt operator--(int) {const MInt res = *this;--*this;return res;}MInt operator+() const { return *this; }MInt operator-() const { return MInt(v ? mod() - v : 0); }MInt operator+(const MInt& x) const { return MInt(*this) += x; }MInt operator-(const MInt& x) const { return MInt(*this) -= x; }MInt operator*(const MInt& x) const { return MInt(*this) *= x; }MInt operator/(const MInt& x) const { return MInt(*this) /= x; }friend std::ostream& operator<<(std::ostream& os, const MInt& x) {return os << x.v;}friend std::istream& operator>>(std::istream& is, MInt& x) {long long v;is >> v;x = MInt(v);return is;}private:static int& mod() {static int divisor = 0;return divisor;}};#endif // ARBITRARY_MODINT#include <bit>template <typename Abelian>struct FenwickTree {explicit FenwickTree(const int n, const Abelian ID = 0): n(n), ID(ID), data(n, ID) {}void add(int idx, const Abelian val) {for (; idx < n; idx |= idx + 1) {data[idx] += val;}}Abelian sum(int idx) const {Abelian res = ID;for (--idx; idx >= 0; idx = (idx & (idx + 1)) - 1) {res += data[idx];}return res;}Abelian sum(const int left, const int right) const {return left < right ? sum(right) - sum(left) : ID;}Abelian operator[](const int idx) const { return sum(idx, idx + 1); }int lower_bound(Abelian val) const {if (val <= ID) [[unlikely]] return 0;int res = 0;for (int mask = std::bit_ceil(static_cast<unsigned int>(n + 1)) >> 1;mask > 0; mask >>= 1) {const int idx = res + mask - 1;if (idx < n && data[idx] < val) {val -= data[idx];res += mask;}}return res;}private:const int n;const Abelian ID;std::vector<Abelian> data;};int main() {using ModInt = MInt<MOD>;int n; cin >> n;vector<int> p(n); REP(i, n) cin >> p[i], --p[i];vector<int> ord(n);iota(ALL(ord), 0);ranges::sort(ord, {}, [&](const int i) -> int { return p[i]; });vector<ModInt> p2(n, 1);FOR(i, 1, n) p2[i] = p2[i - 1] * 2;FenwickTree<int> num(n);FenwickTree<ModInt> bit(n);ModInt ans = 0;for (const int i : ord) {ans += p2[n - 1] * num.sum(i, n) - bit.sum(i, n) * p2[i];num.add(i, 1);bit.add(i, p2[n - 1 - i]);}cout << ans << '\n';return 0;}