結果
問題 | No.2250 Split Permutation |
ユーザー | KowerKoint2010 |
提出日時 | 2023-03-17 22:35:59 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 123 ms / 3,000 ms |
コード長 | 21,998 bytes |
コンパイル時間 | 2,084 ms |
コンパイル使用メモリ | 214,628 KB |
実行使用メモリ | 15,360 KB |
最終ジャッジ日時 | 2024-09-18 11:42:38 |
合計ジャッジ時間 | 4,248 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 123 ms
15,232 KB |
testcase_19 | AC | 107 ms
14,892 KB |
testcase_20 | AC | 86 ms
14,480 KB |
testcase_21 | AC | 49 ms
9,216 KB |
testcase_22 | AC | 75 ms
14,208 KB |
testcase_23 | AC | 14 ms
5,376 KB |
testcase_24 | AC | 74 ms
14,208 KB |
testcase_25 | AC | 107 ms
15,348 KB |
testcase_26 | AC | 37 ms
8,704 KB |
testcase_27 | AC | 10 ms
5,376 KB |
testcase_28 | AC | 19 ms
6,016 KB |
testcase_29 | AC | 107 ms
15,360 KB |
testcase_30 | AC | 20 ms
6,272 KB |
testcase_31 | AC | 6 ms
5,376 KB |
testcase_32 | AC | 26 ms
6,272 KB |
testcase_33 | AC | 63 ms
9,600 KB |
testcase_34 | AC | 15 ms
5,376 KB |
testcase_35 | AC | 43 ms
8,960 KB |
testcase_36 | AC | 24 ms
6,272 KB |
testcase_37 | AC | 115 ms
15,320 KB |
ソースコード
#line 2 "library/KowerKoint/stl-expansion.hpp" #include <bits/stdc++.h> template <typename T1, typename T2> std::istream& operator>>(std::istream& is, std::pair<T1, T2>& p) { is >> p.first >> p.second; return is; } template <typename T, size_t N> std::istream& operator>>(std::istream& is, std::array<T, N>& a) { for (size_t i = 0; i < N; ++i) { is >> a[i]; } return is; } template <typename T> std::istream& operator>>(std::istream& is, std::vector<T>& v) { for (auto& e : v) is >> e; return is; } template <typename T1, typename T2> std::ostream& operator<<(std::ostream& os, const std::pair<T1, T2>& p) { os << p.first << " " << p.second; return os; } template <typename T, size_t N> std::ostream& operator<<(std::ostream& os, const std::array<T, N>& a) { for (size_t i = 0; i < N; ++i) { os << a[i] << (i + 1 == a.size() ? "" : " "); } return os; } template <typename T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) { for (size_t i = 0; i < v.size(); ++i) { os << v[i] << (i + 1 == v.size() ? "" : " "); } return os; } #line 3 "library/KowerKoint/base.hpp" using namespace std; #define REP(i, n) for(int i = 0; i < (int)(n); i++) #define FOR(i, a, b) for(ll i = a; i < (ll)(b); i++) #define ALL(a) (a).begin(),(a).end() #define RALL(a) (a).rbegin(),(a).rend() #define END(...) { print(__VA_ARGS__); return; } using VI = vector<int>; using VVI = vector<VI>; using VVVI = vector<VVI>; using ll = long long; using VL = vector<ll>; using VVL = vector<VL>; using VVVL = vector<VVL>; using ull = unsigned long long; using VUL = vector<ull>; using VVUL = vector<VUL>; using VVVUL = vector<VVUL>; using VD = vector<double>; using VVD = vector<VD>; using VVVD = vector<VVD>; using VS = vector<string>; using VVS = vector<VS>; using VVVS = vector<VVS>; using VC = vector<char>; using VVC = vector<VC>; using VVVC = vector<VVC>; using P = pair<int, int>; using VP = vector<P>; using VVP = vector<VP>; using VVVP = vector<VVP>; using LP = pair<ll, ll>; using VLP = vector<LP>; using VVLP = vector<VLP>; using VVVLP = vector<VVLP>; template <typename T> using PQ = priority_queue<T>; template <typename T> using GPQ = priority_queue<T, vector<T>, greater<T>>; constexpr int INF = 1001001001; constexpr ll LINF = 1001001001001001001ll; constexpr int DX[] = {1, 0, -1, 0}; constexpr int DY[] = {0, 1, 0, -1}; void print() { cout << '\n'; } template<typename T> void print(const T &t) { cout << t << '\n'; } template<typename Head, typename... Tail> void print(const Head &head, const Tail &... tail) { cout << head << ' '; print(tail...); } #ifdef DEBUG void dbg() { cerr << '\n'; } template<typename T> void dbg(const T &t) { cerr << t << '\n'; } template<typename Head, typename... Tail> void dbg(const Head &head, const Tail &... tail) { cerr << head << ' '; dbg(tail...); } #else template<typename... Args> void dbg(const Args &... args) {} #endif template<typename T> vector<vector<T>> split(typename vector<T>::const_iterator begin, typename vector<T>::const_iterator end, T val) { vector<vector<T>> res; vector<T> cur; for(auto it = begin; it != end; it++) { if(*it == val) { res.push_back(cur); cur.clear(); } else cur.push_back(*it); } res.push_back(cur); return res; } vector<string> split(typename string::const_iterator begin, typename string::const_iterator end, char val) { vector<string> res; string cur = ""; for(auto it = begin; it != end; it++) { if(*it == val) { res.push_back(cur); cur.clear(); } else cur.push_back(*it); } res.push_back(cur); return res; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template <typename T> pair<VI, vector<T>> compress(const vector<T> &a) { int n = a.size(); vector<T> x; REP(i, n) x.push_back(a[i]); sort(ALL(x)); x.erase(unique(ALL(x)), x.end()); VI res(n); REP(i, n) res[i] = lower_bound(ALL(x), a[i]) - x.begin(); return make_pair(res, x); } template <typename It> auto rle(It begin, It end) { vector<pair<typename It::value_type, int>> res; if(begin == end) return res; auto pre = *begin; int num = 1; for(auto it = begin + 1; it != end; it++) { if(pre != *it) { res.emplace_back(pre, num); pre = *it; num = 1; } else num++; } res.emplace_back(pre, num); return res; } template <typename It> vector<pair<typename It::value_type, int>> rle_sort(It begin, It end) { vector<typename It::value_type> cloned(begin, end); sort(ALL(cloned)); auto e = rle(ALL(cloned)); sort(ALL(e), [](const auto& l, const auto& r) { return l.second < r.second; }); return e; } template <typename T> pair<vector<T>, vector<T>> factorial(int n) { vector<T> res(n+1), rev(n+1); res[0] = 1; REP(i, n) res[i+1] = res[i] * (i+1); rev[n] = 1 / res[n]; for(int i = n; i > 0; i--) { rev[i-1] = rev[i] * i; } return make_pair(res, rev); } #line 3 "library/KowerKoint/integer/extgcd.hpp" constexpr ll extgcd(ll a, ll b, ll& x, ll& y) { x = 1, y = 0; ll nx = 0, ny = 1; while(b) { ll q = a / b; ll r = a % b; a = b, b = r; ll nnx = x - q * nx; ll nny = y - q * ny; x = nx, nx = nnx; y = ny, ny = nny; } return a; } #line 3 "library/KowerKoint/integer/pow-mod.hpp" constexpr ll inv_mod(ll n, ll m) { n %= m; if (n < 0) n += m; ll x = -1, y = -1; if(extgcd(n, m, x, y) != 1) throw logic_error(""); x %= m; if(x < 0) x += m; return x; } constexpr ll pow_mod(ll a, ll n, ll m) { if(n == 0) return 1LL; if(n < 0) return inv_mod(pow_mod(a, -n, m), m); a %= m; if (a < 0) n += m; ll res = 1; while(n) { if(n & 1) { res *= a; res %= m; } n >>= 1; a *= a; a %= m; } return res; } #line 3 "library/KowerKoint/algebra/field.hpp" template <typename T> struct SumGroupBase { constexpr static bool defzero = false; using Coef = nullptr_t; using Scalar = nullptr_t; }; template <typename T> struct ProdGroupBase { constexpr static bool defone = false; }; template <typename T> struct RepresentationBase { using R = T; constexpr static T construct(const R& x) { return x; } constexpr static R represent(const T& x) { return x; } }; template <typename T> struct CompareBase { constexpr static bool eq(const T& x, const T& y) { return x == y; } constexpr static bool lt(const T& x, const T& y) { return x < y; } }; template <typename T> struct FinitePropertyBase { constexpr static bool is_finite = false; }; template <typename T, typename SumGroup = SumGroupBase<T>, typename ProdGroup = ProdGroupBase<T>, typename Representation = RepresentationBase<T>, typename Compare = CompareBase<T>, typename FiniteProperty = FinitePropertyBase<T>> struct Field { using R = typename Representation::R; using Coef = typename SumGroup::Coef; using Scalar = typename SumGroup::Scalar; T val; constexpr static Field zero() { return SumGroup::zero; } constexpr static Field one() { return ProdGroup::one; } constexpr static bool defzero = SumGroup::defzero; constexpr static bool defone = ProdGroup::defone; constexpr static bool is_finite = FiniteProperty::is_finite; constexpr Field() { if constexpr(SumGroup::defzero) val = SumGroup::zero; else if constexpr(SumGroup::defone) val = ProdGroup::one; else val = T(); } constexpr Field(const R& r) : val(Representation::construct(r)) {} constexpr R represent() const { return Representation::represent(val); } constexpr decltype(auto) operator[](size_t i) const { return val[i]; } constexpr static Field premitive_root() { return FiniteProperty::premitive_root(); } constexpr static size_t order() { return FiniteProperty::order(); } constexpr Field& operator*=(const Field& other) { ProdGroup::mulassign(val, other.val); return *this; } constexpr Field operator*(const Field& other) const { return Field(*this) *= other; } constexpr Field inv() const { return ProdGroup::inv(val); } constexpr Field& operator/=(const Field& other) { return *this *= other.inv(); } constexpr Field operator/(const Field& other) const { return Field(*this) /= other; } constexpr Field pow(ll n) const { if(n < 0) { return inv().pow(-n); } Field res = one(); Field a = *this; while(n > 0) { if(n & 1) res *= a; a *= a; n >>= 1; } return res; } constexpr Field operator+() const { return *this; } constexpr Field& operator+=(const Field& other) { SumGroup::addassign(val, other.val); return *this; } constexpr Field operator+(const Field& other) const { return Field(*this) += other; } constexpr Field operator-() const { return SumGroup::minus(val); } constexpr Field& operator-=(const Field& other) { return *this += -other; } constexpr Field operator-(const Field& other) const { return Field(*this) -= other; } constexpr Field& operator++() { return *this += one(); } Field operator++(int) { Field ret = *this; ++*this; return ret; } constexpr Field& operator--() { return *this -= one(); } Field operator--(int) { Field ret = *this; --*this; return ret; } constexpr Field& operator*=(const Coef& other) { SumGroup::coefassign(val, other); return *this; } constexpr Field operator*(const Coef& other) const { return Field(*this) *= other; } constexpr Scalar dot(const Field& other) const { return SumGroup::dot(val, other.val); } constexpr Scalar norm() const { return dot(*this); } constexpr bool operator==(const Field& other) const { return Compare::eq(val, other.val); } constexpr bool operator!=(const Field& other) const { return !(*this == other); } constexpr bool operator<(const Field& other) const { return Compare::lt(represent(), other.represent()); } constexpr bool operator>(const Field& other) const { return other < *this; } constexpr bool operator<=(const Field& other) const { return !(*this > other); } constexpr bool operator>=(const Field& other) const { return !(*this < other); } friend istream& operator>>(istream& is, Field& f) { R r; is >> r; f = r; return is; } friend ostream& operator<<(ostream& os, const Field& f) { return os << f.represent(); } }; namespace std { template <typename T> struct hash<Field<T>> { size_t operator()(const Field<T>& f) const { return hash<typename Field<T>::R>()(f.represent()); } }; } template <typename> struct is_field : false_type {}; template <typename T, typename SumGroup, typename ProdGroup, typename Representation, typename FiniteProperty> struct is_field<Field<T, SumGroup, ProdGroup, Representation, FiniteProperty>> : true_type {}; template <typename T> constexpr bool is_field_v = is_field<T>::value; template <typename T> constexpr T zero() { if constexpr(is_field_v<T>) return T::zero(); else return 0; } template <typename T> constexpr T one() { if constexpr(is_field_v<T>) return T::one(); else return 1; } template <typename T> constexpr bool is_finite() { if constexpr(is_field_v<T>) return T::is_finite; else return false; } #line 4 "library/KowerKoint/algebra/modint.hpp" template <ll mod> struct SumGroupModint : SumGroupBase<ll> { static ll& addassign(ll& l, const ll& r) { ll ret; if(__builtin_add_overflow(l, r, &ret)) { l = l % mod + r % mod; } else { l = ret; } return l; } constexpr static bool defzero = true; constexpr static ll zero = 0; constexpr static ll minus(const ll& x) { return -x; } }; template <ll mod> struct ProdGroupModint : ProdGroupBase<ll> { constexpr static bool defmul = true; static ll& mulassign(ll& l, const ll& r) { ll ret; if(__builtin_mul_overflow(l, r, &ret)) { l = (l % mod) * (r % mod); } else { l = ret; } return l; } constexpr static bool defone = true; constexpr static ll one = 1; constexpr static bool definv = true; constexpr static ll inv(const ll& x) { return inv_mod(x, mod); } }; template <ll mod> struct RepresentationModint : RepresentationBase<ll> { using R = ll; constexpr static ll construct(const R& x) { return x % mod; } constexpr static R represent(const ll& x) { ll ret = x % mod; if(ret < 0) ret += mod; return ret; } }; template <ll mod> struct CompareModint : CompareBase<ll> { constexpr static bool lt(const ll& l, const ll& r) { return RepresentationModint<mod>::represent(l) < RepresentationModint<mod>::represent(r); } constexpr static bool eq(const ll& l, const ll& r) { return RepresentationModint<mod>::represent(l) == RepresentationModint<mod>::represent(r); } }; template <ll mod> struct FinitePropertyModint : FinitePropertyBase<ll> { constexpr static bool is_finite = true; constexpr static ll premitive_root() { static_assert(mod == 998244353); return 3; } constexpr static size_t order() { return mod - 1; } }; template <ll mod> using Modint = Field<ll, SumGroupModint<mod>, ProdGroupModint<mod>, RepresentationModint<mod>, CompareModint<mod>, FinitePropertyModint<mod>>; using MI3 = Modint<998244353>; using V3 = vector<MI3>; using VV3 = vector<V3>; using VVV3 = vector<VV3>; using MI7 = Modint<1000000007>; using V7 = vector<MI7>; using VV7 = vector<V7>; using VVV7 = vector<VV7>; #line 3 "library/KowerKoint/counting/counting.hpp" template <typename T> struct Counting { vector<T> fact, ifact; Counting() {} Counting(ll n) { assert(n >= 0); expand(n); } void expand(ll n) { assert(n >= 0); ll sz = (ll)fact.size(); if(sz > n) return; fact.resize(n+1); ifact.resize(n+1); fact[0] = 1; FOR(i, max(1LL, sz), n+1) fact[i] = fact[i-1] * i; ifact[n] = fact[n].inv(); for(ll i = n-1; i >= sz; i--) ifact[i] = ifact[i+1] * (i+1); } T p(ll n, ll r) { if(n < r) return 0; assert(r >= 0); expand(n); return fact[n] * ifact[n-r]; } T c(ll n, ll r) { if(n < r) return 0; assert(r >= 0); expand(n); return fact[n] * ifact[r] * ifact[n-r]; } T h(ll n, ll r) { assert(n >= 0); assert(r >= 0); return c(n+r-1, r); } T stirling(ll n, ll k) { if(n < k) return 0; assert(k >= 0); if(n == 0) return 1; T res = 0; T sign = k%2? -1 : 1; expand(k); REP(i, k+1) { res += sign * ifact[i] * ifact[k-i] * T(i).pow(n); sign *= -1; } return res; } vector<vector<T>> stirling_table(ll n, ll k) { assert(n >= 0 && k >= 0); vector<vector<T>> res(n+1, vector<T>(k+1)); res[0][0] = 1; FOR(i, 1, n+1) FOR(j, 1, k+1) { res[i][j] = res[i-1][j-1] + j * res[i-1][j]; } return res; } T bell(ll n, ll k) { assert(n >= 0 && k >= 0); expand(k); vector<T> tmp(k+1); T sign = 1; tmp[0] = 1; FOR(i, 1, k+1) { sign *= -1; tmp[i] = tmp[i-1] + sign * ifact[i]; } T res = 0; REP(i, k+1) { res += T(i).pow(n) * ifact[i] * tmp[k-i]; } return res; } vector<vector<T>> partition_table(ll n, ll k) { assert(n >= 0 && k >= 0); vector<vector<T>> res(n+1, vector<T>(k+1)); REP(i, k+1) res[0][i] = 1; FOR(i, 1, n+1) FOR(j, 1, k+1) { res[i][j] = res[i][j-1] + (i<j? 0 : res[i-j][j]); } return res; } }; #line 3 "library/KowerKoint/operator.hpp" template <typename T> T add_op(T a, T b) { return a + b; } template <typename T> T sub_op(T a, T b) { return a - b; } template <typename T> T zero_e() { return T(0); } template <typename T> T div_op(T a, T b) { return a / b; } template <typename T> T mult_op(T a, T b) { return a * b; } template <typename T> T one_e() { return T(1); } template <typename T> T xor_op(T a, T b) { return a ^ b; } template <typename T> T and_op(T a, T b) { return a & b; } template <typename T> T or_op(T a, T b) { return a | b; } ll mod3() { return 998244353LL; } ll mod7() { return 1000000007LL; } ll mod9() { return 1000000009LL; } template <typename T> T max_op(T a, T b) { return max(a, b); } template <typename T> T min_op(T a, T b) { return min(a, b); } template <typename T> T max_e() { return numeric_limits<T>::max(); } template <typename T> T min_e() { return numeric_limits<T>::min(); } #line 3 "library/KowerKoint/segtree/segtree.hpp" template <typename S, S (*op)(const S, const S), S (*e)()> struct SegTree { protected: int n, sz, height; vector<S> state; void update(int k) { assert(0 <= k && k < sz); state[k] = op(state[k*2], state[k*2+1]); } public: SegTree(int n_ = 0): n(n_) { assert(n_ >= 0); sz = 1; height = 0; while(sz < n) { height++; sz <<= 1; } state.assign(sz*2, e()); } SegTree(const vector<S>& v): n(v.size()) { sz = 1; height = 0; while(sz < n) { height++; sz <<= 1; } state.assign(sz*2, e()); REP(i, v.size()) state[sz+i] = v[i]; for(int i = sz-1; i > 0; i--) update(i); } S get(int i) const { assert(0 <= i && i < n); return state[sz+i]; } S operator[](int i) const { assert(0 <= i && i < n); return get(i); } void set(int i, const S &x) { assert(0 <= i && i < n); i += sz; state[i] = x; while(i >>= 1) update(i); } void ch_op(int i, const S &x) { set(i, op(get(i), x)); } S prod(int l, int r) const { assert(0 <= l && l <= r && r <= n); S left_prod = e(), right_prod = e(); l += sz, r += sz; while(l < r) { if(l & 1) left_prod = op(left_prod, state[l++]); if(r & 1) right_prod = op(state[--r], right_prod); l >>= 1; r >>= 1; } return op(left_prod, right_prod); } S all_prod() const { return state[1]; } template <typename F> int max_right(int l, F f) const { assert(0 <= l && l <= n); assert(f(e())); if(l == n) return n; l += sz; while(l % 2 == 0) l >>= 1; S sum = e(); while(f(op(sum, state[l]))) { if(__builtin_clz(l) != __builtin_clz(l+1)) return n; sum = op(sum, state[l]); l++; while(l % 2 == 0) l >>= 1; } while(l < sz) { if(!f(op(sum, state[l*2]))) l *= 2; else { sum = op(sum, state[l*2]); l = l*2 + 1; } } return l - sz; } template <typename F> int min_left(int r, F f) const { assert(0 <= r && r <= n); assert(f(e())); if(r == 0) return 0; r += sz-1; while(r % 2 == 1) r >>= 1; S sum = e(); while(f(op(state[r], sum))) { if(__builtin_clz(r) != __builtin_clz(r-1)) return 0; sum = op(state[r], sum); r--; while(r % 2 == 1) r >>= 1; } while(r < sz) { if(!f(op(state[r*2+1], sum))) r = r*2 + 1; else { sum = op(state[r*2+1], sum); r = r*2; } } return r - sz + 1; } }; template <typename S> using RMaxQ = SegTree<S, max_op<S>, min_e<S>>; template <typename S> using RMinQ = SegTree<S, min_op<S>, max_e<S>>; template <typename S> using RSumQ = SegTree<S, add_op<S>, zero_e<S>>; #line 3 "Contests/yukicoder_381/yukicoder_381_e/main.cpp" /* #include "atcoder/all" */ /* using namespace atcoder; */ /* #include "KowerKoint/expansion/ac-library/all.hpp" */ void solve(){ int n; cin >> n; VI p(n); cin >> p; RSumQ<MI3> fw1(n+1), fw2(n+1); V3 two_pow(n+1); two_pow[0] = 1; REP(i, n) two_pow[i+1] = two_pow[i] * 2; V3 two_pow_inv(n+1); two_pow_inv[n] = MI3(1) / two_pow[n]; REP(i, n) two_pow_inv[n-i-1] = two_pow_inv[n-i] * 2; MI3 ans = 0; REP(i, n) { ans += fw1.prod(p[i]+1, n+1); ans -= fw2.prod(p[i]+1, n+1) * two_pow_inv[i]; fw1.ch_op(p[i], 1); fw2.ch_op(p[i], two_pow[i]); } print(two_pow[n-1] * ans); } // generated by oj-template v4.7.2 (https://github.com/online-judge-tools/template-generator) int main() { // Fasterize input/output script ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(100); // scanf/printf user should delete this fasterize input/output script int t = 1; //cin >> t; // comment out if solving multi testcase for(int testCase = 1;testCase <= t;++testCase){ solve(); } return 0; }