結果

問題 No.2250 Split Permutation
ユーザー kaichou243kaichou243
提出日時 2023-03-17 23:22:29
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 204 ms / 3,000 ms
コード長 58,389 bytes
コンパイル時間 3,223 ms
コンパイル使用メモリ 314,024 KB
実行使用メモリ 7,424 KB
最終ジャッジ日時 2024-09-18 12:26:52
合計ジャッジ時間 6,506 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 1 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 1 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 1 ms
5,376 KB
testcase_18 AC 202 ms
7,296 KB
testcase_19 AC 180 ms
7,296 KB
testcase_20 AC 156 ms
7,296 KB
testcase_21 AC 94 ms
6,940 KB
testcase_22 AC 139 ms
7,296 KB
testcase_23 AC 27 ms
6,940 KB
testcase_24 AC 141 ms
7,424 KB
testcase_25 AC 199 ms
7,424 KB
testcase_26 AC 68 ms
6,944 KB
testcase_27 AC 18 ms
6,940 KB
testcase_28 AC 35 ms
6,940 KB
testcase_29 AC 204 ms
7,296 KB
testcase_30 AC 38 ms
6,940 KB
testcase_31 AC 11 ms
6,940 KB
testcase_32 AC 51 ms
6,940 KB
testcase_33 AC 107 ms
6,940 KB
testcase_34 AC 27 ms
6,940 KB
testcase_35 AC 74 ms
6,940 KB
testcase_36 AC 44 ms
6,944 KB
testcase_37 AC 200 ms
7,296 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include <immintrin.h>
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define FOR(i,n) for(int i = 0; i < (n); i++)
#define sz(c) ((int)(c).size())
#define ten(x) ((int)1e##x)
#define all(v) (v).begin(), (v).end()
using namespace std;
using ll=long long;
using P = pair<ll,ll>;
const long double PI=acos(-1);
const ll INF=1e18;
const int inf=1e9;
struct Edge {
    ll to;
    ll cost;
};
using Graph=vector<vector<Edge>>;
template <typename T>
bool chmax(T &a,const T& b){
  if (a<b){
    a=b;
    return true;
  }
  return false;
}
template <typename T>
bool chmin(T &a,const T& b){
  if (a>b){
    a=b;
    return true;
  }
  return false;
}
template<int MOD> struct Fp{
  ll val;
  constexpr Fp(long long v = 0) noexcept : val(v % MOD) {
    if (val < 0) val += MOD;
  }
  static constexpr int getmod() { return MOD; }
  constexpr Fp operator - () const noexcept {
    return val ? MOD - val : 0;
  }
  constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
  constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
  constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
  constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
  constexpr Fp& operator += (const Fp& r) noexcept {
    val += r.val;
    if (val >= MOD) val -= MOD;
    return *this;
  }
  constexpr Fp& operator -= (const Fp& r) noexcept {
    val -= r.val;
    if (val < 0) val += MOD;
    return *this;
  }
  constexpr Fp& operator *= (const Fp& r) noexcept {
    val = val * r.val % MOD;
    return *this;
  }
  constexpr Fp& operator /= (const Fp& r) noexcept {
    ll a = r.val, b = MOD, u = 1, v = 0;
    while (b) {
      ll t = a / b;
      a -= t * b, swap(a, b);
      u -= t * v, swap(u, v);
    }
    val = val * u % MOD;
    if (val < 0) val += MOD;
    return *this;
  }
  constexpr bool operator == (const Fp& r) const noexcept {
    return this->val == r.val;
  }
  constexpr bool operator != (const Fp& r) const noexcept {
    return this->val != r.val;
  }
  constexpr bool operator < (const Fp& r) const noexcept {
    return this->val < r.val;
  }
  friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept {
    is >> x.val;
    x.val %= MOD;
    if (x.val < 0) x.val += MOD;
    return is;
  }
  friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept {
    return os << x.val;
  }
  friend constexpr Fp<MOD> modpow(const Fp<MOD>& a, long long n) noexcept {
    Fp<MOD> res=1,r=a;
    while(n){
      if(n&1) res*=r;
      r*=r;
      n>>=1;
    }
    return res;
  }
  friend constexpr Fp<MOD> modinv(const Fp<MOD>& r) noexcept {
        long long a = r.val, b = MOD, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b, swap(a, b);
            u -= t * v, swap(u, v);
        }
        return Fp<MOD>(u);
  }
  ll get(){
      return val;
  }
  explicit operator bool()const{
		return val;
  }
};
template< uint32_t mod, bool fast = false >
struct MontgomeryModInt {
  using mint = MontgomeryModInt;
  using i32 = int32_t;
  using i64 = int64_t;
  using u32 = uint32_t;
  using u64 = uint64_t;
 
  static constexpr u32 get_r() {
    u32 ret = mod;
    for(i32 i = 0; i < 4; i++) ret *= 2 - mod * ret;
    return ret;
  }
 
  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
 
  static_assert(r * mod == 1, "invalid, r * mod != 1");
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
 
  u32 a;
 
  MontgomeryModInt() : a{} {}
 
  MontgomeryModInt(const i64 &x)
      : a(reduce(u64(fast ? x : (x % mod + mod)) * n2)) {}
 
  static constexpr u32 reduce(const u64 &b) {
    return u32(b >> 32) + mod - u32((u64(u32(b) * r) * mod) >> 32);
  }
 
  constexpr mint& operator+=(const mint &p) {
    if(i32(a += p.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }
 
  constexpr mint& operator-=(const mint &p) {
    if(i32(a -= p.a) < 0) a += 2 * mod;
    return *this;
  }
 
  constexpr mint& operator*=(const mint &p) {
    a = reduce(u64(a) * p.a);
    return *this;
  }
 
  constexpr mint& operator/=(const mint &p) {
    *this *= modinv(p);
    return *this;
  }
 
  constexpr mint operator-() const { return mint() - *this; }
 
  constexpr mint operator+(const mint &p) const { return mint(*this) += p; }
 
  constexpr mint operator-(const mint &p) const { return mint(*this) -= p; }
 
  constexpr mint operator*(const mint &p) const { return mint(*this) *= p; }
 
  constexpr mint operator/(const mint &p) const { return mint(*this) /= p; }
 
  constexpr bool operator==(const mint &p) const { return (a >= mod ? a - mod : a) == (p.a >= mod ? p.a - mod : p.a); }
 
  constexpr bool operator!=(const mint &p) const { return (a >= mod ? a - mod : a) != (p.a >= mod ? p.a - mod : p.a); }
 
  u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }
 
  friend constexpr MontgomeryModInt<mod> modpow(const MontgomeryModInt<mod> &x,u64 n) noexcept {
    MontgomeryModInt<mod> ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
 
  friend constexpr MontgomeryModInt<mod> modinv(const MontgomeryModInt<mod> &r) noexcept {
        u64 a = r.get(), b = mod, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b, swap(a, b);
            u -= t * v, swap(u, v);
        }
        return MontgomeryModInt<mod>(u);
  }
 
  friend ostream &operator<<(ostream &os, const mint &p) {
    return os << p.get();
  }
 
  friend istream &operator>>(istream &is, mint &a) {
    i64 t;
    is >> t;
    a = mint(t);
    return is;
  }
  static constexpr u32 getmod() { return mod; }
};
template<class T,T (*op)(T,T),T (*e)()> struct SegmentTree{
  int n;
  vector<T> dat;
  SegmentTree(int N){
    n=1;
    while(n<N)n*=2;
    dat.assign(2*n,e());
  }
  void add(int k,T x){
    k+=n;
    dat[k]+=x;
    while(k){
      k>>=1;
      dat[k]=op(dat[k*2],dat[k*2+1]);
    }
  }
  void apply(int k,T x){
    k+=n;
    dat[k]=op(dat[k],x);
    while(k){
      k>>=1;
      dat[k]=op(dat[k*2],dat[k*2+1]);
    }
  }
  void set(int k,T x){
    k+=n;
    dat[k]=x;
    while(k){
      k>>=1;
      dat[k]=op(dat[k*2],dat[k*2+1]);
    }
  }
  T query(int l,int r){
    T prodl=e(),prodr=e();
    l+=n;
    r+=n;
    while(l<r){
      if(l&1) prodl=op(prodl,dat[l++]);
      if(r&1) prodr=op(dat[--r],prodr);
      l>>=1;
      r>>=1;
    }
    return op(prodl,prodr);
  }
};
struct FenwickTree{
    int n;
    vector<ll> dat;
    FenwickTree(int N){
        n=1;
        while(n<N) n*=2;
        dat.assign(n,0);
    }
    void add(int k,ll x){
    k+=1;
    while(k<=n){
      dat[k]+=x;
      k+=k&-k;
    }
  }
  //sum[0,k)
  ll sum(int k){
    ll ans=0;
    while(k){
      ans+=dat[k];
      k-=k&-k;
    }
    return ans;
  }
  //sum[l,r)
  ll sum(int l,int r){
    return sum(r)-sum(l);
  }
};
template<class S,S (*op)(S,S),S (*e)(),class F,S (*mapping)(F,S),F (*composition)(F,F),F (*id)()>
struct LazySegTree{
  private:
  int _n,size=1,idx=0;
  vector<S>seq;
  vector<F>lazy;
  void update(int k){seq[k]=op(seq[2*k],seq[2*k+1]);}
  void all_apply(int k,F f){
    seq[k]=mapping(f,seq[k]);
    if(k<size)lazy[k]=composition(f,lazy[k]);
  }
  void eval(int k){
    all_apply(2*k,lazy[k]);
    all_apply(2*k+1,lazy[k]);
    lazy[k]=id();
  }
  public:
  LazySegTree(int n):LazySegTree(vector<S>(n,e())){}
  LazySegTree(const vector<S>&v):_n(int(v.size())){
    while(size<_n)size<<=1,idx++;
    seq=vector<S>(2*size,e());
    lazy=vector<F>(2*size,id());
    for(int i=0;i<_n;i++)seq[size+i]=v[i];
    for(int i=size-1;i>=1;i--)update(i);
  }
  void set(int p,S x){
    p+=size;
    for(int i=idx;i>=1;i--)eval(p>>i);
    seq[p]=x;
    for(int i=1;i<=idx;i++)update(p>>i);
  }
  void add(int p,S x){
    p+=size;
    for(int i=idx;i>=1;i--)eval(p>>i);
    seq[p]+=x;
    for(int i=1;i<=idx;i++)update(p>>i);
  }
  S operator[](int p){
    p+=size;
    for(int i=idx;i>=1;i--)eval(p>>i);
    return seq[p];
  }
  S query(int l,int r){
    if(l==r)return e();
    S sml=e(),smr=e();
    l+=size,r+=size;
    for(int i=idx;i>=1;i--){
      if(((l>>i)<<i)!=l)eval(l>>i);
      if(((r>>i)<<i)!=r)eval(r>>i);
    }
    while(l<r){
      if(l&1)sml=op(sml,seq[l++]);
      if(r&1)smr=op(seq[--r],smr);
      l>>=1,r>>=1;
    }
    return op(sml,smr);
  }
  S all_query()const{return seq[1];}
  void apply(int p,F f){
    p+=size;
    for(int i=idx;i>=1;i--)eval(p>>i);
    seq[p]=mapping(f,seq[p]);
    for(int i=1;i<=idx;i++)update(p>>i);
  }
  void apply(int l,int r,F f){
    if(l==r)return ;
    l+=size;
    r+=size;
    for(int i=idx;i>=1;i--){
      if(((l>>i)<<i)!=l)eval(l>>i);
      if(((r>>i)<<i)!=r)eval((r-1)>>i);
    }
    int l2=l,r2=r;
    while(l<r){
      if(l&1)all_apply(l++,f);
      if(r&1)all_apply(--r,f);
      l>>=1;
      r>>=1;
    }
    l=l2,r=r2;
    for(int i=1;i<=idx;i++){
      if(((l>>i)<<i)!=l)update(l>>i);
      if(((r>>i)<<i)!=r)update((r-1)>>i);
    }
  }
};
ll mod(ll a,ll MOD){
    if(a<0) a+=MOD;
    return a%MOD;
}
ll modpow(ll a,ll n,ll mod){
  ll res=1;
  a%=mod;
  while (n>0){
    if (n & 1) res*=a;
    a *= a;
    a%=mod;
    n >>= 1;
    res%=mod;
  }
  return res;
}
vector<P> prime_factorize(ll N) {
  vector<P> res;
  for (ll a = 2; a * a <= N; ++a) {
    if (N % a != 0) continue;
    ll ex = 0;
    while(N % a == 0){
      ++ex;
      N /= a;
    }
    res.push_back({a, ex});
  }
  if (N != 1) res.push_back({N, 1});
  return res;
}
ll modinv(ll a, ll mod) {
    ll b = mod, u = 1, v = 0;
    while (b) {
        ll t = a/b;
        a -= t * b, swap(a, b);
        u -= t * v, swap(u, v);
    }
    u %= mod;
    if (u < 0) u += mod;
    return u;
}
ll extGcd(ll a, ll b, ll &p, ll &q) {  
    if (b == 0) { p = 1; q = 0; return a; }  
    ll d = extGcd(b, a%b, q, p);  
    q -= a/b * p;  
    return d;  
}
P ChineseRem(const vector<ll> &b, const vector<ll> &m) {
  ll r = 0, M = 1;
  for (int i = 0; i < (int)b.size(); ++i) {
    ll p, q;
    ll d = extGcd(M, m[i], p, q);
    if ((b[i] - r) % d != 0) return make_pair(0, -1);
    ll tmp = (b[i] - r) / d * p % (m[i]/d);
    r += M * tmp;
    M *= m[i]/d;
  }
  return make_pair(mod(r, M), M);
}
namespace NTT {
using i64 = int64_t;
__attribute__((target("sse4.2"))) inline __m128i my128_mullo_epu32(
    const __m128i &a, const __m128i &b) {
  return _mm_mullo_epi32(a, b);
}
 
__attribute__((target("sse4.2"))) inline __m128i my128_mulhi_epu32(
    const __m128i &a, const __m128i &b) {
  __m128i a13 = _mm_shuffle_epi32(a, 0xF5);
  __m128i b13 = _mm_shuffle_epi32(b, 0xF5);
  __m128i prod02 = _mm_mul_epu32(a, b);
  __m128i prod13 = _mm_mul_epu32(a13, b13);
  __m128i prod = _mm_unpackhi_epi64(_mm_unpacklo_epi32(prod02, prod13),
                                    _mm_unpackhi_epi32(prod02, prod13));
  return prod;
}
 
__attribute__((target("sse4.2"))) inline __m128i montgomery_mul_128(
    const __m128i &a, const __m128i &b, const __m128i &r, const __m128i &m1) {
  return _mm_sub_epi32(
      _mm_add_epi32(my128_mulhi_epu32(a, b), m1),
      my128_mulhi_epu32(my128_mullo_epu32(my128_mullo_epu32(a, b), r), m1));
}
 
__attribute__((target("sse4.2"))) inline __m128i montgomery_add_128(
    const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) {
  __m128i ret = _mm_sub_epi32(_mm_add_epi32(a, b), m2);
  return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret);
}
 
__attribute__((target("sse4.2"))) inline __m128i montgomery_sub_128(
    const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) {
  __m128i ret = _mm_sub_epi32(a, b);
  return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret);
}
 
__attribute__((target("avx2"))) inline __m256i my256_mullo_epu32(
    const __m256i &a, const __m256i &b) {
  return _mm256_mullo_epi32(a, b);
}
 
__attribute__((target("avx2"))) inline __m256i my256_mulhi_epu32(
    const __m256i &a, const __m256i &b) {
  __m256i a13 = _mm256_shuffle_epi32(a, 0xF5);
  __m256i b13 = _mm256_shuffle_epi32(b, 0xF5);
  __m256i prod02 = _mm256_mul_epu32(a, b);
  __m256i prod13 = _mm256_mul_epu32(a13, b13);
  __m256i prod = _mm256_unpackhi_epi64(_mm256_unpacklo_epi32(prod02, prod13),
                                       _mm256_unpackhi_epi32(prod02, prod13));
  return prod;
}
 
__attribute__((target("avx2"))) inline __m256i montgomery_mul_256(
    const __m256i &a, const __m256i &b, const __m256i &r, const __m256i &m1) {
  return _mm256_sub_epi32(
      _mm256_add_epi32(my256_mulhi_epu32(a, b), m1),
      my256_mulhi_epu32(my256_mullo_epu32(my256_mullo_epu32(a, b), r), m1));
}
 
__attribute__((target("avx2"))) inline __m256i montgomery_add_256(
    const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) {
  __m256i ret = _mm256_sub_epi32(_mm256_add_epi32(a, b), m2);
  return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2),
                          ret);
}
 
__attribute__((target("avx2"))) inline __m256i montgomery_sub_256(
    const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) {
  __m256i ret = _mm256_sub_epi32(a, b);
  return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2),
                          ret);
}
    int calc_primitive_root(int mod) {
        if (mod == 2) return 1;
        if (mod == 167772161) return 3;
        if (mod == 469762049) return 3;
        if (mod == 754974721) return 11;
        if (mod == 998244353) return 3;
        int divs[20] = {};
        divs[0] = 2;
        int cnt = 1;
        long long x = (mod - 1) / 2;
        while (x % 2 == 0) x /= 2;
        for (long long i = 3; i * i <= x; i += 2) {
            if (x % i == 0) {
                divs[cnt++] = i;
                while (x % i == 0) x /= i;
            }
        }
        if (x > 1) divs[cnt++] = x;
        for (int g = 2;; g++) {
            bool ok = true;
            for (int i = 0; i < cnt; i++) {
                if (modpow(g, (mod - 1) / divs[i], mod) == 1) {
                    ok = false;
                    break;
                }
            }
            if (ok) return g;
        }
    }
 
    int get_fft_size(int N, int M) {
        int size_a = 1, size_b = 1;
        while (size_a < N) size_a <<= 1;
        while (size_b < M) size_b <<= 1;
        return max(size_a, size_b) << 1;
    }
    constexpr int bsf_constexpr(unsigned int n) {
      int x = 0;
      while (!(n & (1 << x))) x++;
      return x;
    }
    int bsf(unsigned int n) {
      #ifdef _MSC_VER
      unsigned long index;
      _BitScanForward(&index, n);
      return index;
      #else
      return __builtin_ctz(n);
      #endif
    }
    template <class mint>
    struct fft_info{
      static constexpr int rank2 = bsf_constexpr(mint::getmod() - 1);
      std::array<mint, rank2 + 1> root;   // root[i]^(2^i) == 1
      std::array<mint, rank2 + 1> iroot;  // root[i] * iroot[i] == 1
      std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
      std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;
 
      std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
      std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;
      int g;
      fft_info(){
        int MOD=mint::getmod();
        g=calc_primitive_root(MOD);
        root[rank2] = modpow(mint(g),(MOD - 1) >> rank2);
        iroot[rank2] = modinv(root[rank2]);
        for (int i = rank2 - 1; i >= 0; i--) {
            root[i] = root[i + 1] * root[i + 1];
            iroot[i] = iroot[i + 1] * iroot[i + 1];
        }
 
        {
            mint prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 2; i++) {
                rate2[i] = root[i + 2] * prod;
                irate2[i] = iroot[i + 2] * iprod;
                prod *= iroot[i + 2];
                iprod *= root[i + 2];
            }
        }
        {
            mint prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 3; i++) {
                rate3[i] = root[i + 3] * prod;
                irate3[i] = iroot[i + 3] * iprod;
                prod *= iroot[i + 3];
                iprod *= root[i + 3];
            }
        }
      }
    };
    int ceil_pow2(int n) {
      int x = 0;
      while ((1U << x) < (unsigned int)(n)) x++;
      return x;
    }
    // number-theoretic transform
    template <class mint>
    void trans(std::vector<mint>& a) {
      int n = int(a.size());
      int h = ceil_pow2(n);
      int MOD=a[0].getmod();
      static const fft_info<mint> info;
 
      int len = 0;  // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
      while (len < h) {
        if (h - len == 1) {
            int p = 1 << (h - len - 1);
            mint rot = 1;
            for (int s = 0; s < (1 << len); s++) {
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p] * rot;
                    a[i + offset] = l + r;
                    a[i + offset + p] = l - r;
                }
                if (s + 1 != (1 << len))
                    rot *= info.rate2[bsf(~(unsigned int)(s))];
            }
            len++;
        } else {
            // 4-base
            int p = 1 << (h - len - 2);
            mint rot = 1, imag = info.root[2];
            for (int s = 0; s < (1 << len); s++) {
                mint rot2 = rot * rot;
                mint rot3 = rot2 * rot;
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto mod2 = 1ULL * MOD * MOD;
                    auto a0 = 1ULL * a[i + offset].get();
                    auto a1 = 1ULL * a[i + offset + p].get() * rot.get();
                    auto a2 = 1ULL * a[i + offset + 2 * p].get() * rot2.get();
                    auto a3 = 1ULL * a[i + offset + 3 * p].get() * rot3.get();
                    auto a1na3imag =
                        1ULL * mint(a1 + mod2 - a3).get() * imag.get();
                    auto na2 = mod2 - a2;
                    a[i + offset] = a0 + a2 + a1 + a3;
                    a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
                    a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
                    a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
                }
                if (s + 1 != (1 << len))
                    rot *= info.rate3[bsf(~(unsigned int)(s))];
            }
            len += 2;
        }
      }
    }
    template <class mint>
    void trans_inv(std::vector<mint>& a) {
      int n = int(a.size());
      int h = ceil_pow2(n);
 
      static const fft_info<mint> info;
      int MOD=a[0].getmod();
      int len = h;  // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
      while (len) {
        if (len == 1) {
            int p = 1 << (h - len);
            mint irot = 1;
            for (int s = 0; s < (1 << (len - 1)); s++) {
                int offset = s << (h - len + 1);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p];
                    a[i + offset] = l + r;
                    a[i + offset + p] =
                        (unsigned long long)(MOD + l.get() - r.get()) *
                        irot.get();
                    ;
                }
                if (s + 1 != (1 << (len - 1)))
                    irot *= info.irate2[bsf(~(unsigned int)(s))];
            }
            len--;
        } else {
            // 4-base
            int p = 1 << (h - len);
            mint irot = 1, iimag = info.iroot[2];
            for (int s = 0; s < (1 << (len - 2)); s++) {
                mint irot2 = irot * irot;
                mint irot3 = irot2 * irot;
                int offset = s << (h - len + 2);
                for (int i = 0; i < p; i++) {
                    auto a0 = 1ULL * a[i + offset + 0 * p].get();
                    auto a1 = 1ULL * a[i + offset + 1 * p].get();
                    auto a2 = 1ULL * a[i + offset + 2 * p].get();
                    auto a3 = 1ULL * a[i + offset + 3 * p].get();
 
                    auto a2na3iimag =
                        1ULL *
                        mint((MOD + a2 - a3) * iimag.get()).get();
 
                    a[i + offset] = a0 + a1 + a2 + a3;
                    a[i + offset + 1 * p] =
                        (a0 + (MOD - a1) + a2na3iimag) * irot.get();
                    a[i + offset + 2 * p] =
                        (a0 + a1 + (MOD - a2) + (MOD - a3)) *
                        irot2.get();
                    a[i + offset + 3 * p] =
                        (a0 + (MOD - a1) + (MOD - a2na3iimag)) *
                        irot3.get();
                }
                if (s + 1 != (1 << (len - 2)))
                    irot *= info.irate3[bsf(~(unsigned int)(s))];
            }
            len -= 2;
        }
      }
    }
namespace ntt_inner {
using u64 = uint64_t;
constexpr uint32_t get_pr(uint32_t mod) {
  if (mod == 2) return 1;
  u64 ds[32] = {};
  int idx = 0;
  u64 m = mod - 1;
  for (u64 i = 2; i * i <= m; ++i) {
    if (m % i == 0) {
      ds[idx++] = i;
      while (m % i == 0) m /= i;
    }
  }
  if (m != 1) ds[idx++] = m;
 
  uint32_t pr = 2;
  while (1) {
    int flg = 1;
    for (int i = 0; i < idx; ++i) {
      u64 a = pr, b = (mod - 1) / ds[i], r = 1;
      while (b) {
        if (b & 1) r = r * a % mod;
        a = a * a % mod;
        b >>= 1;
      }
      if (r == 1) {
        flg = 0;
        break;
      }
    }
    if (flg == 1) break;
    ++pr;
  }
  return pr;
}
 
constexpr int SZ_FFT_BUF = 1 << 23;
uint32_t _buf1[SZ_FFT_BUF] __attribute__((aligned(64)));
uint32_t _buf2[SZ_FFT_BUF] __attribute__((aligned(64)));
}  // namespace ntt_inner
 
template <typename mint>
struct NumberTheoreticTransform {
  static constexpr uint32_t mod = mint::getmod();
  static constexpr uint32_t pr = ntt_inner::get_pr(mint::getmod());
  static constexpr int level = __builtin_ctzll(mod - 1);
  mint dw[level], dy[level];
  mint *buf1, *buf2;
 
  constexpr NumberTheoreticTransform() {
    setwy(level);
    union raw_cast {
      mint dat;
      uint32_t _;
    };
    buf1 = &(((raw_cast *)(ntt_inner::_buf1))->dat);
    buf2 = &(((raw_cast *)(ntt_inner::_buf2))->dat);
  }
 
  constexpr void setwy(int k) {
    mint w[level], y[level];
    w[k - 1] = modpow(mint(pr),(mod - 1) / (1 << k));
    y[k - 1] = modinv(w[k - 1]);
    for (int i = k - 2; i > 0; --i)
      w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
    dw[0] = dy[0] = w[1] * w[1];
    dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
    for (int i = 3; i < k; ++i) {
      dw[i] = dw[i - 1] * y[i - 2] * w[i];
      dy[i] = dy[i - 1] * w[i - 2] * y[i];
    }
  }
 
  __attribute__((target("avx2"))) void ntt(mint *a, int n) {
    int k = n ? __builtin_ctz(n) : 0;
    if (k == 0) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    if (k & 1) {
      int v = 1 << (k - 1);
      if (v < 8) {
        for (int j = 0; j < v; ++j) {
          mint ajv = a[j + v];
          a[j + v] = a[j] - ajv;
          a[j] += ajv;
        }
      } else {
        const __m256i m0 = _mm256_set1_epi32(0);
        const __m256i m2 = _mm256_set1_epi32(mod + mod);
        int j0 = 0;
        int j1 = v;
        for (; j0 < v; j0 += 8, j1 += 8) {
          __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
          __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
          __m256i naj = montgomery_add_256(T0, T1, m2, m0);
          __m256i najv = montgomery_sub_256(T0, T1, m2, m0);
          _mm256_storeu_si256((__m256i *)(a + j0), naj);
          _mm256_storeu_si256((__m256i *)(a + j1), najv);
        }
      }
    }
    int u = 1 << (2 + (k & 1));
    int v = 1 << (k - 2 - (k & 1));
    mint one = mint(1);
    mint imag = dw[1];
    while (v) {
      if (v == 1) {
        mint ww = one, xx = one, wx = one;
        for (int jh = 0; jh < u;) {
          ww = xx * xx, wx = ww * xx;
          mint t0 = a[jh + 0], t1 = a[jh + 1] * xx;
          mint t2 = a[jh + 2] * ww, t3 = a[jh + 3] * wx;
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[jh + 0] = t0p2 + t1p3, a[jh + 1] = t0p2 - t1p3;
          a[jh + 2] = t0m2 + t1m3, a[jh + 3] = t0m2 - t1m3;
          xx *= dw[__builtin_ctz((jh += 4))];
        }
      } else if (v == 4) {
        const __m128i m0 = _mm_set1_epi32(0);
        const __m128i m1 = _mm_set1_epi32(mod);
        const __m128i m2 = _mm_set1_epi32(mod + mod);
        const __m128i r = _mm_set1_epi32(mint::r);
        const __m128i Imag = _mm_set1_epi32(imag.a);
        mint ww = one, xx = one, wx = one;
        for (int jh = 0; jh < u;) {
          if (jh == 0) {
            int j0 = 0;
            int j1 = v;
            int j2 = j1 + v;
            int j3 = j2 + v;
            int je = v;
            for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
              const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
              const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
              const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
              const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
              const __m128i T0P2 = montgomery_add_128(T0, T2, m2, m0);
              const __m128i T1P3 = montgomery_add_128(T1, T3, m2, m0);
              const __m128i T0M2 = montgomery_sub_128(T0, T2, m2, m0);
              const __m128i T1M3 = montgomery_mul_128(
                  montgomery_sub_128(T1, T3, m2, m0), Imag, r, m1);
              _mm_storeu_si128((__m128i *)(a + j0),
                               montgomery_add_128(T0P2, T1P3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j1),
                               montgomery_sub_128(T0P2, T1P3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j2),
                               montgomery_add_128(T0M2, T1M3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j3),
                               montgomery_sub_128(T0M2, T1M3, m2, m0));
            }
          } else {
            ww = xx * xx, wx = ww * xx;
            const __m128i WW = _mm_set1_epi32(ww.a);
            const __m128i WX = _mm_set1_epi32(wx.a);
            const __m128i XX = _mm_set1_epi32(xx.a);
            int j0 = jh * v;
            int j1 = j0 + v;
            int j2 = j1 + v;
            int j3 = j2 + v;
            int je = j1;
            for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
              const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
              const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
              const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
              const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
              const __m128i MT1 = montgomery_mul_128(T1, XX, r, m1);
              const __m128i MT2 = montgomery_mul_128(T2, WW, r, m1);
              const __m128i MT3 = montgomery_mul_128(T3, WX, r, m1);
              const __m128i T0P2 = montgomery_add_128(T0, MT2, m2, m0);
              const __m128i T1P3 = montgomery_add_128(MT1, MT3, m2, m0);
              const __m128i T0M2 = montgomery_sub_128(T0, MT2, m2, m0);
              const __m128i T1M3 = montgomery_mul_128(
                  montgomery_sub_128(MT1, MT3, m2, m0), Imag, r, m1);
              _mm_storeu_si128((__m128i *)(a + j0),
                               montgomery_add_128(T0P2, T1P3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j1),
                               montgomery_sub_128(T0P2, T1P3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j2),
                               montgomery_add_128(T0M2, T1M3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j3),
                               montgomery_sub_128(T0M2, T1M3, m2, m0));
            }
          }
          xx *= dw[__builtin_ctz((jh += 4))];
        }
      } else {
        const __m256i m0 = _mm256_set1_epi32(0);
        const __m256i m1 = _mm256_set1_epi32(mod);
        const __m256i m2 = _mm256_set1_epi32(mod + mod);
        const __m256i r = _mm256_set1_epi32(mint::r);
        const __m256i Imag = _mm256_set1_epi32(imag.a);
        mint ww = one, xx = one, wx = one;
        for (int jh = 0; jh < u;) {
          if (jh == 0) {
            int j0 = 0;
            int j1 = v;
            int j2 = j1 + v;
            int j3 = j2 + v;
            int je = v;
            for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) {
              const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
              const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
              const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2));
              const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3));
              const __m256i T0P2 = montgomery_add_256(T0, T2, m2, m0);
              const __m256i T1P3 = montgomery_add_256(T1, T3, m2, m0);
              const __m256i T0M2 = montgomery_sub_256(T0, T2, m2, m0);
              const __m256i T1M3 = montgomery_mul_256(
                  montgomery_sub_256(T1, T3, m2, m0), Imag, r, m1);
              _mm256_storeu_si256((__m256i *)(a + j0),
                                  montgomery_add_256(T0P2, T1P3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j1),
                                  montgomery_sub_256(T0P2, T1P3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j2),
                                  montgomery_add_256(T0M2, T1M3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j3),
                                  montgomery_sub_256(T0M2, T1M3, m2, m0));
            }
          } else {
            ww = xx * xx, wx = ww * xx;
            const __m256i WW = _mm256_set1_epi32(ww.a);
            const __m256i WX = _mm256_set1_epi32(wx.a);
            const __m256i XX = _mm256_set1_epi32(xx.a);
            int j0 = jh * v;
            int j1 = j0 + v;
            int j2 = j1 + v;
            int j3 = j2 + v;
            int je = j1;
            for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) {
              const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
              const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
              const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2));
              const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3));
              const __m256i MT1 = montgomery_mul_256(T1, XX, r, m1);
              const __m256i MT2 = montgomery_mul_256(T2, WW, r, m1);
              const __m256i MT3 = montgomery_mul_256(T3, WX, r, m1);
              const __m256i T0P2 = montgomery_add_256(T0, MT2, m2, m0);
              const __m256i T1P3 = montgomery_add_256(MT1, MT3, m2, m0);
              const __m256i T0M2 = montgomery_sub_256(T0, MT2, m2, m0);
              const __m256i T1M3 = montgomery_mul_256(
                  montgomery_sub_256(MT1, MT3, m2, m0), Imag, r, m1);
              _mm256_storeu_si256((__m256i *)(a + j0),
                                  montgomery_add_256(T0P2, T1P3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j1),
                                  montgomery_sub_256(T0P2, T1P3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j2),
                                  montgomery_add_256(T0M2, T1M3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j3),
                                  montgomery_sub_256(T0M2, T1M3, m2, m0));
            }
          }
          xx *= dw[__builtin_ctz((jh += 4))];
        }
      }
      u <<= 2;
      v >>= 2;
    }
  }
 
  __attribute__((target("avx2"))) void intt(mint *a, int n,
                                            int normalize = true) {
    int k = n ? __builtin_ctz(n) : 0;
    if (k == 0) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      if (normalize) {
        a[0] *= modinv(mint(2));
        a[1] *= modinv(mint(2));
      }
      return;
    }
    int u = 1 << (k - 2);
    int v = 1;
    mint one = mint(1);
    mint imag = dy[1];
    while (u) {
      if (v == 1) {
        mint ww = one, xx = one, yy = one;
        u <<= 2;
        for (int jh = 0; jh < u;) {
          ww = xx * xx, yy = xx * imag;
          mint t0 = a[jh + 0], t1 = a[jh + 1];
          mint t2 = a[jh + 2], t3 = a[jh + 3];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
          a[jh + 0] = t0p1 + t2p3, a[jh + 2] = (t0p1 - t2p3) * ww;
          a[jh + 1] = t0m1 + t2m3, a[jh + 3] = (t0m1 - t2m3) * ww;
          xx *= dy[__builtin_ctz(jh += 4)];
        }
      } else if (v == 4) {
        const __m128i m0 = _mm_set1_epi32(0);
        const __m128i m1 = _mm_set1_epi32(mod);
        const __m128i m2 = _mm_set1_epi32(mod + mod);
        const __m128i r = _mm_set1_epi32(mint::r);
        const __m128i Imag = _mm_set1_epi32(imag.a);
        mint ww = one, xx = one, yy = one;
        u <<= 2;
        for (int jh = 0; jh < u;) {
          if (jh == 0) {
            int j0 = 0;
            int j1 = v;
            int j2 = v + v;
            int j3 = j2 + v;
            for (; j0 < v; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
              const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
              const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
              const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
              const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
              const __m128i T0P1 = montgomery_add_128(T0, T1, m2, m0);
              const __m128i T2P3 = montgomery_add_128(T2, T3, m2, m0);
              const __m128i T0M1 = montgomery_sub_128(T0, T1, m2, m0);
              const __m128i T2M3 = montgomery_mul_128(
                  montgomery_sub_128(T2, T3, m2, m0), Imag, r, m1);
              _mm_storeu_si128((__m128i *)(a + j0),
                               montgomery_add_128(T0P1, T2P3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j2),
                               montgomery_sub_128(T0P1, T2P3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j1),
                               montgomery_add_128(T0M1, T2M3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j3),
                               montgomery_sub_128(T0M1, T2M3, m2, m0));
            }
          } else {
            ww = xx * xx, yy = xx * imag;
            const __m128i WW = _mm_set1_epi32(ww.a);
            const __m128i XX = _mm_set1_epi32(xx.a);
            const __m128i YY = _mm_set1_epi32(yy.a);
            int j0 = jh * v;
            int j1 = j0 + v;
            int j2 = j1 + v;
            int j3 = j2 + v;
            int je = j1;
            for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
              const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
              const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
              const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
              const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
              const __m128i T0P1 = montgomery_add_128(T0, T1, m2, m0);
              const __m128i T2P3 = montgomery_add_128(T2, T3, m2, m0);
              const __m128i T0M1 = montgomery_mul_128(
                  montgomery_sub_128(T0, T1, m2, m0), XX, r, m1);
              __m128i T2M3 = montgomery_mul_128(
                  montgomery_sub_128(T2, T3, m2, m0), YY, r, m1);
              _mm_storeu_si128((__m128i *)(a + j0),
                               montgomery_add_128(T0P1, T2P3, m2, m0));
              _mm_storeu_si128(
                  (__m128i *)(a + j2),
                  montgomery_mul_128(montgomery_sub_128(T0P1, T2P3, m2, m0), WW,
                                     r, m1));
              _mm_storeu_si128((__m128i *)(a + j1),
                               montgomery_add_128(T0M1, T2M3, m2, m0));
              _mm_storeu_si128(
                  (__m128i *)(a + j3),
                  montgomery_mul_128(montgomery_sub_128(T0M1, T2M3, m2, m0), WW,
                                     r, m1));
            }
          }
          xx *= dy[__builtin_ctz(jh += 4)];
        }
      } else {
        const __m256i m0 = _mm256_set1_epi32(0);
        const __m256i m1 = _mm256_set1_epi32(mod);
        const __m256i m2 = _mm256_set1_epi32(mod + mod);
        const __m256i r = _mm256_set1_epi32(mint::r);
        const __m256i Imag = _mm256_set1_epi32(imag.a);
        mint ww = one, xx = one, yy = one;
        u <<= 2;
        for (int jh = 0; jh < u;) {
          if (jh == 0) {
            int j0 = 0;
            int j1 = v;
            int j2 = v + v;
            int j3 = j2 + v;
            for (; j0 < v; j0 += 8, j1 += 8, j2 += 8, j3 += 8) {
              const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
              const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
              const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2));
              const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3));
              const __m256i T0P1 = montgomery_add_256(T0, T1, m2, m0);
              const __m256i T2P3 = montgomery_add_256(T2, T3, m2, m0);
              const __m256i T0M1 = montgomery_sub_256(T0, T1, m2, m0);
              const __m256i T2M3 = montgomery_mul_256(
                  montgomery_sub_256(T2, T3, m2, m0), Imag, r, m1);
              _mm256_storeu_si256((__m256i *)(a + j0),
                                  montgomery_add_256(T0P1, T2P3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j2),
                                  montgomery_sub_256(T0P1, T2P3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j1),
                                  montgomery_add_256(T0M1, T2M3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j3),
                                  montgomery_sub_256(T0M1, T2M3, m2, m0));
            }
          } else {
            ww = xx * xx, yy = xx * imag;
            const __m256i WW = _mm256_set1_epi32(ww.a);
            const __m256i XX = _mm256_set1_epi32(xx.a);
            const __m256i YY = _mm256_set1_epi32(yy.a);
            int j0 = jh * v;
            int j1 = j0 + v;
            int j2 = j1 + v;
            int j3 = j2 + v;
            int je = j1;
            for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) {
              const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
              const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
              const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2));
              const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3));
              const __m256i T0P1 = montgomery_add_256(T0, T1, m2, m0);
              const __m256i T2P3 = montgomery_add_256(T2, T3, m2, m0);
              const __m256i T0M1 = montgomery_mul_256(
                  montgomery_sub_256(T0, T1, m2, m0), XX, r, m1);
              const __m256i T2M3 = montgomery_mul_256(
                  montgomery_sub_256(T2, T3, m2, m0), YY, r, m1);
              _mm256_storeu_si256((__m256i *)(a + j0),
                                  montgomery_add_256(T0P1, T2P3, m2, m0));
              _mm256_storeu_si256(
                  (__m256i *)(a + j2),
                  montgomery_mul_256(montgomery_sub_256(T0P1, T2P3, m2, m0), WW,
                                     r, m1));
              _mm256_storeu_si256((__m256i *)(a + j1),
                                  montgomery_add_256(T0M1, T2M3, m2, m0));
              _mm256_storeu_si256(
                  (__m256i *)(a + j3),
                  montgomery_mul_256(montgomery_sub_256(T0M1, T2M3, m2, m0), WW,
                                     r, m1));
            }
          }
          xx *= dy[__builtin_ctz(jh += 4)];
        }
      }
      u >>= 4;
      v <<= 2;
    }
    if (k & 1) {
      v = 1 << (k - 1);
      if (v < 8) {
        for (int j = 0; j < v; ++j) {
          mint ajv = a[j] - a[j + v];
          a[j] += a[j + v];
          a[j + v] = ajv;
        }
      } else {
        const __m256i m0 = _mm256_set1_epi32(0);
        const __m256i m2 = _mm256_set1_epi32(mod + mod);
        int j0 = 0;
        int j1 = v;
        for (; j0 < v; j0 += 8, j1 += 8) {
          const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
          const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
          __m256i naj = montgomery_add_256(T0, T1, m2, m0);
          __m256i najv = montgomery_sub_256(T0, T1, m2, m0);
          _mm256_storeu_si256((__m256i *)(a + j0), naj);
          _mm256_storeu_si256((__m256i *)(a + j1), najv);
        }
      }
    }
    if (normalize) {
      mint invn = modinv(mint(n));
      for (int i = 0; i < n; i++) a[i] *= invn;
    }
  }
 
  __attribute__((target("avx2"))) void inplace_multiply(
      int l1, int l2, int zero_padding = true) {
    int l = l1 + l2 - 1;
    int M = 4;
    while (M < l) M <<= 1;
    if (zero_padding) {
      for (int i = l1; i < M; i++) ntt_inner::_buf1[i] = 0;
      for (int i = l2; i < M; i++) ntt_inner::_buf2[i] = 0;
    }
    const __m256i m0 = _mm256_set1_epi32(0);
    const __m256i m1 = _mm256_set1_epi32(mod);
    const __m256i r = _mm256_set1_epi32(mint::r);
    const __m256i N2 = _mm256_set1_epi32(mint::n2);
    for (int i = 0; i < l1; i += 8) {
      __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf1 + i));
      __m256i b = montgomery_mul_256(a, N2, r, m1);
      _mm256_storeu_si256((__m256i *)(ntt_inner::_buf1 + i), b);
    }
    for (int i = 0; i < l2; i += 8) {
      __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf2 + i));
      __m256i b = montgomery_mul_256(a, N2, r, m1);
      _mm256_storeu_si256((__m256i *)(ntt_inner::_buf2 + i), b);
    }
    ntt(buf1, M);
    ntt(buf2, M);
    for (int i = 0; i < M; i += 8) {
      __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf1 + i));
      __m256i b = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf2 + i));
      __m256i c = montgomery_mul_256(a, b, r, m1);
      _mm256_storeu_si256((__m256i *)(ntt_inner::_buf1 + i), c);
    }
    intt(buf1, M, false);
    const __m256i INVM = _mm256_set1_epi32((mint(M).inverse()).a);
    for (int i = 0; i < l; i += 8) {
      __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf1 + i));
      __m256i b = montgomery_mul_256(a, INVM, r, m1);
      __m256i c = my256_mulhi_epu32(my256_mullo_epu32(b, r), m1);
      __m256i d = _mm256_and_si256(_mm256_cmpgt_epi32(c, m0), m1);
      __m256i e = _mm256_sub_epi32(d, c);
      _mm256_storeu_si256((__m256i *)(ntt_inner::_buf1 + i), e);
    }
  }
 
  void ntt(vector<mint> &a) {
    int M = (int)a.size();
    for (int i = 0; i < M; i++) buf1[i].a = a[i].a;
    ntt(buf1, M);
    for (int i = 0; i < M; i++) a[i].a = buf1[i].a;
  }
 
  void intt(vector<mint> &a) {
    int M = (int)a.size();
    for (int i = 0; i < M; i++) buf1[i].a = a[i].a;
    intt(buf1, M, true);
    for (int i = 0; i < M; i++) a[i].a = buf1[i].a;
  }
 
  vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
    if (a.size() == 0 && b.size() == 0) return vector<mint>{};
    int l = a.size() + b.size() - 1;
    if (min<int>(a.size(), b.size()) <= 40) {
      vector<mint> s(l);
      for (int i = 0; i < (int)a.size(); ++i)
        for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
      return s;
    }
    assert(l <= ntt_inner::SZ_FFT_BUF);
    int M = 4;
    while (M < l) M <<= 1;
    for (int i = 0; i < (int)a.size(); ++i) buf1[i].a = a[i].a;
    for (int i = (int)a.size(); i < M; ++i) buf1[i].a = 0;
    for (int i = 0; i < (int)b.size(); ++i) buf2[i].a = b[i].a;
    for (int i = (int)b.size(); i < M; ++i) buf2[i].a = 0;
    ntt(buf1, M);
    ntt(buf2, M);
    for (int i = 0; i < M; ++i)
      buf1[i].a = mint::reduce(uint64_t(buf1[i].a) * buf2[i].a);
    intt(buf1, M, false);
    vector<mint> s(l);
    mint invm = modinv(mint(M));
    for (int i = 0; i < l; ++i) s[i] = buf1[i] * invm;
    return s;
  }
 
  void ntt_doubling(vector<mint> &a) {
    int M = (int)a.size();
    for (int i = 0; i < M; i++) buf1[i].a = a[i].a;
    intt(buf1, M);
    mint r = 1, zeta = modpow(mint(pr),(mint::get_mod() - 1) / (M << 1));
    for (int i = 0; i < M; i++) buf1[i] *= r, r *= zeta;
    ntt(buf1, M);
    a.resize(2 * M);
    for (int i = 0; i < M; i++) a[M + i].a = buf1[i].a;
  }
};
    // for garner
    static constexpr int m0 = 167772161;
    static constexpr int m1 = 469762049;
    static constexpr int m2 = 754974721;
    using mint0 = MontgomeryModInt<m0>;
    using mint1 = MontgomeryModInt<m1>;
    using mint2 = MontgomeryModInt<m2>;
    static constexpr int r01 = 104391568;
    static constexpr int r02 = 323560596;
    static constexpr int r12 = 399692502;
    static constexpr int r02r12 = 190329765;
    static constexpr i64 w1 = m0;
    static constexpr i64 w2 = i64(m0) * m1;
    using mint998 = MontgomeryModInt<998244353>;
    NumberTheoreticTransform<mint998> ntt998;
    NumberTheoreticTransform<mint0> ntt0;
    NumberTheoreticTransform<mint1> ntt1;
    NumberTheoreticTransform<mint2> ntt2;
    // small case (T = mint, long long)
    template<class T> vector<T> naive_mul 
    (const vector<T> &A, const vector<T> &B) {
        if (A.empty() || B.empty()) return {};
        int N = (int)A.size(), M = (int)B.size();
        vector<T> res(N + M - 1);
        for (int i = 0; i < N; ++i)
            for (int j = 0; j < M; ++j)
                res[i + j] += A[i] * B[j];
        return res;
    }
 
    // mint
    template<class mint>
    vector<mint> mul(vector<mint> A,vector<mint> B) {
        if (A.empty() || B.empty()) return {};
        int n = int(A.size()), m = int(B.size());
        if (min(n, m) < 30) return naive_mul(A, B);
        int MOD = A[0].getmod();
        if (MOD == 998244353) {
            vector<mint998> a(n),b(m);
            for(int i=0;i<n;i++) a[i]=mint998(A[i].get());
            for(int i=0;i<m;i++) b[i]=mint998(B[i].get());
            vector<mint998> c=ntt998.multiply(a,b);
            vector<mint> res(n+m-1);
            for(int i=0;i<n+m-1;i++) res[i]=c[i].get();
            return res;
        }
        vector<mint0> a0(n), b0(m);
        vector<mint1> a1(n), b1(m);
        vector<mint2> a2(n), b2(m);
        for (int i = 0; i < n; ++i)
            a0[i] = mint0(A[i].get()), a1[i] = mint1(A[i].get()), a2[i] = mint2(A[i].get());
        for (int i = 0; i < m; ++i)
            b0[i] = mint0(B[i].get()), b1[i] = mint1(B[i].get()), b2[i] = mint2(B[i].get());
        static const int W1 = w1%MOD, W2 = w2%MOD;
        vector<mint0> c0=ntt0.multiply(a0,b0);
        vector<mint1> c1=ntt1.multiply(a1,b1);
        vector<mint2> c2=ntt2.multiply(a2,b2);
        vector<mint> res(n + m - 1);
        for (int i = 0; i < n + m - 1; ++i) {
            int n1 = c1[i].get(), n2 = c2[i].get(), a = c0[i].get();
            int b = i64(n1 + m1 - a) * r01 % m1;
            int c = (i64(n2 + m2 - a) * r02r12 + i64(m2 - b) * r12) % m2;
            res[i] = mint(i64(a) + i64(b) * W1 + i64(c) * W2);
        }
        return res;
    }
};
// Formal Power Series
template <typename mint> struct FPS : vector<mint> {
    using vector<mint>::vector;
 /*
    template<class...Args>
    FPS(Args...args) : vector<mint>(args...){}
  */
    // constructor
    FPS(const vector<mint>& r) : vector<mint>(r) {}
 
    // core operator
    inline FPS pre(int siz) const {
        return FPS(begin(*this), begin(*this) + min((int)this->size(), siz));
    }
    inline FPS rev() const {
        FPS res = *this;
        reverse(begin(res), end(res));
        return res;
    }
    inline FPS& normalize() {
        while (!this->empty() && this->back() == 0) this->pop_back();
        return *this;
    }
 
    // basic operator
    inline FPS operator - () const noexcept {
        FPS res = (*this);
        for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i];
        return res;
    }
    inline FPS operator + (const mint& v) const { return FPS(*this) += v; }
    inline FPS operator + (const FPS& r) const { return FPS(*this) += r; }
    inline FPS operator - (const mint& v) const { return FPS(*this) -= v; }
    inline FPS operator - (const FPS& r) const { return FPS(*this) -= r; }
    inline FPS operator * (const mint& v) const { return FPS(*this) *= v; }
    inline FPS operator * (const FPS& r) const { return FPS(*this) *= r; }
    inline FPS operator / (const mint& v) const { return FPS(*this) /= v; }
    inline FPS operator << (int x) const { return FPS(*this) <<= x; }
    inline FPS operator >> (int x) const { return FPS(*this) >>= x; }
    inline FPS& operator += (const mint& v) {
        if (this->empty()) this->resize(1);
        (*this)[0] += v;
        return *this;
    }
    inline FPS& operator += (const FPS& r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i];
        return this->normalize();
    }
    inline FPS& operator -= (const mint& v) {
        if (this->empty()) this->resize(1);
        (*this)[0] -= v;
        return *this;
    }
    inline FPS& operator -= (const FPS& r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i];
        return this->normalize();
    }
    inline FPS& operator *= (const mint& v) {
        for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v;
        return *this;
    }
    inline FPS& operator *= (const FPS& r) {
        return *this = NTT::ntt998.multiply((*this), r);
    }
    inline FPS& operator /= (const mint& v) {
        assert(v != 0);
        mint iv = modinv(v);
        for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv;
        return *this;
    }
    inline FPS& operator <<= (int x) {
        FPS res(x, 0);
        res.insert(res.end(), begin(*this), end(*this));
        return *this = res;
    }
    inline FPS& operator >>= (int x) {
        FPS res;
        res.insert(res.end(), begin(*this) + x, end(*this));
        return *this = res;
    }
    inline mint eval(const mint& v){
        mint res = 0;
        for (int i = (int)this->size()-1; i >= 0; --i) {
            res *= v;
            res += (*this)[i];
        }
        return res;
    }
    inline friend FPS gcd(const FPS& f, const FPS& g) {
        if (g.empty()) return f;
        return gcd(g, f % g);
    }

    // advanced operation
    // df/dx
    inline friend FPS diff(const FPS& f) {
        int n = (int)f.size();
        FPS res(n-1);
        for (int i = 1; i < n; ++i) res[i-1] = f[i] * i;
        return res;
    }

    // \int f dx
    inline friend FPS integral(const FPS& f) {
        int n = (int)f.size();
        FPS res(n+1, 0);
        for (int i = 0; i < n; ++i) res[i+1] = f[i] / (i+1);
        return res;
    }

    // inv(f), f[0] must not be 0
    inline friend FPS inv(const FPS& f, int deg) {
        assert(f[0] != 0);
        if (deg < 0) deg = (int)f.size();
        FPS res({mint(1) / f[0]});
        for (int i = 1; i < deg; i <<= 1) {
            res = (res + res - res * res * f.pre(i << 1)).pre(i << 1);
        }
        res.resize(deg);
        return res;
    }
    inline friend FPS inv(const FPS& f) {
        return inv(f, f.size());
    }

    // division, r must be normalized (r.back() must not be 0)
    inline FPS& operator /= (const FPS& r) {
        const int n=(*this).size(),m=r.size();
        if(n<m){
            (*this).clear();
            return *this;
        }
        assert(r.back() != 0);
        this->normalize();
        if (this->size() < r.size()) {
            this->clear();
            return *this;
        }
        int need = (int)this->size() - (int)r.size() + 1;
        *this = ((*this).rev().pre(need) * inv(r.rev(), need)).pre(need).rev();
        return *this;
    }
    inline FPS& operator %= (const FPS &r) {
        const int n=(*this).size(),m=r.size();
        if(n<m) return (*this);
        assert(r.back() != 0);
        this->normalize();
        FPS q = (*this) / r;
        return *this -= q * r;
    }
    inline FPS operator / (const FPS& r) const { return FPS(*this) /= r; }
    inline FPS operator % (const FPS& r) const { return FPS(*this) %= r; }

    // log(f) = \int f'/f dx, f[0] must be 1
    inline friend FPS log(const FPS& f, int deg) {
        assert(f[0] == 1);
        FPS res = integral((diff(f) * inv(f, deg)).pre(deg-1));
        return res;
    }
    inline friend FPS log(const FPS& f) {
        return log(f, f.size());
    }

    // exp(f), f[0] must be 0
    inline friend FPS exp(const FPS& f, int deg) {
        assert(f[0] == 0);
        FPS res(1, 1);
        for (int i = 1; i < deg; i <<= 1) {
            res = res * (f.pre(i<<1) - log(res, i<<1) + 1).pre(i<<1);
        }
        res.resize(deg);
        return res;
    }
    inline friend FPS exp(const FPS& f) {
        return exp(f, f.size());
    }

    // pow(f) = exp(e * log f)
    inline friend FPS pow(const FPS& f, long long e, int deg) {
        long long i = 0;
        while (i < (int)f.size() && f[i] == 0) ++i;
        if (i == (int)f.size()) return FPS(deg, 0);
        if (i * e >= deg) return FPS(deg, 0);
        mint k = f[i];
        FPS res = exp(log((f >> i) / k, deg) * e, deg) * modpow(k, e) << (e * i);
        res.resize(deg);
        return res;
    }
    inline friend FPS pow(const FPS& f, long long e) {
        return pow(f, e, f.size());
    }

    // sqrt(f), f[0] must be 1
    inline friend FPS sqrt_base(const FPS& f, int deg) {
        assert(f[0] == 1);
        mint inv2 = mint(1) / 2;
        FPS res(1, 1);
        for (int i = 1; i < deg; i <<= 1) {
            res = (res + f.pre(i << 1) * inv(res, i << 1)).pre(i << 1);
            for (mint& x : res) x *= inv2;
        }
        res.resize(deg);
        return res;
    }
    inline friend FPS sqrt_base(const FPS& f) {
        return sqrt_base(f, f.size());
    }
    FPS taylor_shift(mint c) const {
      int n = (int) this->size();
      vector<mint> fact(n), rfact(n);
      fact[0] = rfact[0] = mint(1);
      for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * mint(i);
      rfact[n - 1] = mint(1) / fact[n - 1];
      for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * mint(i);
      FPS p(*this);
      for(int i = 0; i < n; i++) p[i] *= fact[i];
      p = p.rev();
      FPS bs(n, mint(1));
      for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1];
      p = (p * bs).pre(n);
      p = p.rev();
      for(int i = 0; i < n; i++) p[i] *= rfact[i];
      return p;
    }
};
template <typename mint> FPS<mint> product(vector<FPS<mint>> a){
  int siz=1;
  while(siz<int(a.size())){
    siz<<=1;
  }
  vector<FPS<mint>> res(siz*2-1,{1});
  for(int i=0;i<int(a.size());++i){
    res[i+siz-1]=a[i];
  }
  for(int i=siz-2;i>=0;--i){
    res[i]=res[2*i+1]*res[2*i+2];
  }
  return res[0];
}
template<typename mint> FPS<mint> inv_sum(vector<FPS<mint>> f){
  int siz=1;
  while(siz<int(f.size())){
    siz<<=1;
  }
  vector<FPS<mint>> mol(siz*2-1),dem(siz*2-1,{1});
  for(size_t i=0;i<f.size();++i){
    mol[i+siz-1]={1};
    dem[i+siz-1]=f[i];
  }
  for(int i=siz-2;i>=0;--i){
    dem[i]=dem[2*i+1]*dem[2*i+2];
    mol[i]=mol[2*i+1]*dem[2*i+2]+mol[2*i+2]*dem[2*i+1];
  }
  mol[0]*=inv(dem[0]);
  return mol[0];
}
template <typename mint> FPS<mint> rev(FPS<mint> p) { reverse(p.begin(),p.end()); return p; }
template <typename mint> FPS<mint> RSZ(FPS<mint> p, int x) { p.resize(x); return p; }
template<typename mint>
struct subproduct_tree{
  using poly=FPS<mint>;
  vector<poly> tree;
  int n,siz;
  subproduct_tree(const vector<mint> &x){
    n=1;
    siz=sz(x);
    while(n<siz) n*=2;;
    tree.resize(2*n,{mint(1)});
    for(int i=0;i<siz;i++) tree[i+n]={-x[i],mint(1)};
    for(int i=n-1;i>0;i--) tree[i]=tree[2*i]*tree[2*i+1];
  }
  vector<mint> multieval(const poly &f){
    vector<poly> remainder(2*n);
    remainder[1]=f%tree[1];
    for(int i=1;i<n;i++){
      remainder[2*i]=remainder[i]%tree[2*i];
      remainder[2*i+1]=remainder[i]%tree[2*i+1];
    }
    vector<mint> ret(siz);
    for(int i=0;i<siz;i++){
        if(remainder[i+n].empty()) ret[i]=0;
        else ret[i]=remainder[i+n][0];
    }
    return ret;
  }
  poly interpolate(const vector<mint> &y){
    poly g=diff(tree[1]);
    vector<mint> evaled=multieval(g);
    vector<poly> mol(2*n),dem(2*n,{1});
    for(int i=0;i<siz;++i){
      mol[i+n]={y[i]};
      dem[i+n]=tree[i+n]*evaled[i];
    }
    for(int i=n-1;i>0;--i){
      dem[i]=dem[2*i]*dem[2*i+1];
      mol[i]=mol[2*i]*dem[2*i+1]+mol[2*i+1]*dem[2*i];
    }
    mol[1]*=inv(dem[1]);
    return RSZ(tree[1]*mol[1],siz);
  }
};
template <typename mint> vector<mint> multieval(const FPS<mint> &f,const vector<mint> &x){
  subproduct_tree<mint> tree(x);
  return tree.multieval(f);
}
template <typename mint> FPS<mint> interpolate(const vector<mint> &x,const vector<mint> &y){
  assert(sz(x)==sz(y));
  if(sz(x)==1) return {y[0]};
  subproduct_tree<mint> tree(x);
  return tree.interpolate(y);
}
template<typename mint>
mint Bostan_Mori(ll n,FPS<mint> P,FPS<mint> Q){
    while(n){
        auto C=Q;
        for(int i=1;i<C.size();i+=2) C[i]*=-1;
        P*=C;
        Q*=C;
        FPS<mint> H;
        for(int i=(n&1ll);i<P.size();i+=2) H.push_back(P[i]);
        P=H;
        FPS<mint> L;
        for(int i=0;i<Q.size();i+=2) L.push_back(Q[i]);
        Q=L;
        n>>=1;
    }
    return P[0]/Q[0];
}
using mint=MontgomeryModInt<998244353>;
mint op(mint a,mint b){ return a+b; }
mint e(){ return mint(0); }
int main(){
    #define in(...) sc.read(__VA_ARGS__)
    #define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)
    #define INT(...) int __VA_ARGS__;in(__VA_ARGS__)
    #define STR(...) string __VA_ARGS__;in(__VA_ARGS__)
    #define out(...) pr.write(__VA_ARGS__)
    #define outln(...) pr.writeln(__VA_ARGS__)
    #define outspace(...) pr.write(__VA_ARGS__),pr.write(' ')
    #define rall(v) (v).rbegin(), (v).rend()
    #define fi first
    #define se second
    /*
        
    */
    int n;
    cin>>n;
    mint ans=0;
    SegmentTree<mint,op,e> st(n),st2(n);
    FOR(i,n){
        int p;
        cin>>p;
        --p;
        st.add(p,mint(1));
        st2.add(p,modpow(mint(2),i));
        ans+=(st.query(p+1,n)*modpow(mint(2),i)-st2.query(p+1,n))*modpow(mint(2),n-i-1);
    }
    cout<<ans.get()<<endl;
}
0